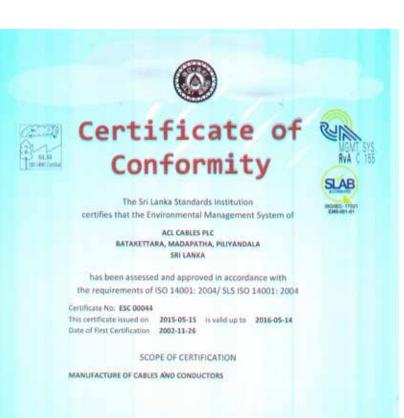
Foreword

This catalogue contains the dimensions, electrical properties and installation data on POWER-X (XLPE insulated power cables) according to British Standards, 69-30 and IET wiring regulation Seventeenth Edition: 2008+A1:2010.

ACL Cables PLC is proud to establish a relationship with you and we are offering you a reliability of over five decades of cable manufacturing since 1962, coupled with the developing technological efficiency of electric cables. We have ventured as far Europe, Africa, Asia to New Zealand and Australia since 1989 with POWER-X and our journey of Innovation will continue.


We would also express our sincere thanks to our customers and well wishes who had already established a mutually beneficial relationship. We hope this catalogue to be of good aid and use.

ACL CABLES PLC 2016 June (Fifth Edition)

Certificates of Excellence

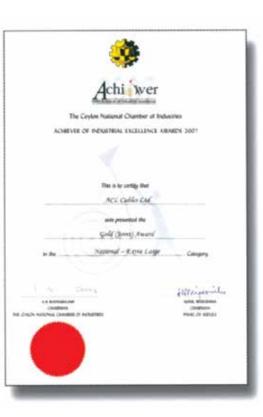
	Certificate of
	Conformity
	The Sri Lanka Standards Institution certifies that the Quality Management System of Mar. CARLES MLC
	NO. 60, ROUNEY STREET, COLOMNO 08 SRI LANKA
	has been assessed and approved in accordance with the requirements of ISO 9001;2008 / SLS ISO 9001;2008
	Certificate no QSC 00384
	The certificate assect on 2014-05-13 is valid up to 2017-05-12
	Dote of full certification 1998-01-30
	SCOPE OF CERTIFICATION
	DESIGN AND DEVELOPMENT, MANUFACTURE AND DISTRIBUTION OF CARLES
	AND CONDUCTORS
Qua	is approval is subject to the continued satisfactory operation of the organization's iny Management System. This certificate is also applicable to the sites and premises ad in the authorized schedule bearing the same number and date as in this certificate.
	R. D. Aman
	DRECTOR GENERAL
	Sri Lanka Standards Institution No. 17, Vetete Pace, Eveladia Mawatha, Colombo Git, St Lanka www.db.it

This approval is subject to the continued satisfactory operation of the organization's Environmental Management System.

Z. 0. DIRECTOR GENERAL

SRI LANKA STANDARDS INSTITUTION No. 17, Victoria Place, Elvitigala Mawatha, Colombo 08, Sri Lanka www.sisi.lk

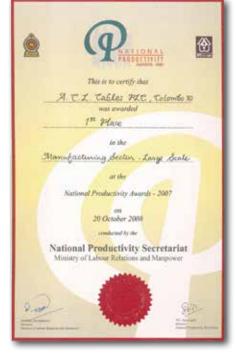
ISO 9001 : 2008


ISO 14001 : 2004

Awards of Excellence

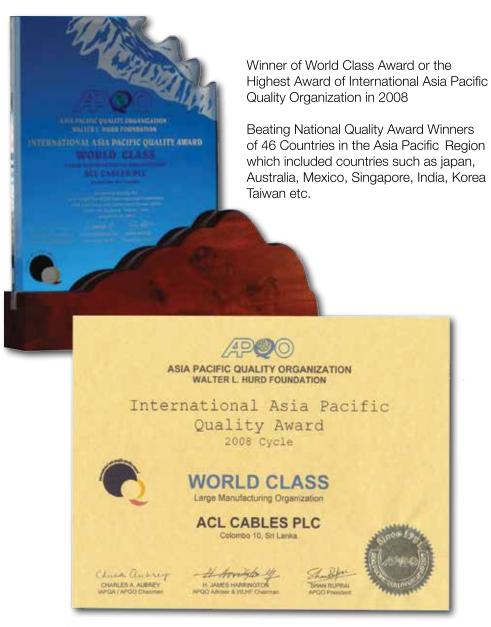
Taiki Akimoto 5s Merit Award 2007

Industrial Excellence Award In Extra Large Manufacturing Category 2007



Highest Sri Lanka Award for Quality

National Quality Award Large Manufacturing Category 2007



Highest Sri Lanka Award for Productivity

National Productivity Award Large Manufacturing Sector 2007

Ceylon National Chamber of Industries	
Achiever	
Read Provide Statements	
Achiever of Industrial Excellence Awards 2009	
This is to certify that	A A
ACL Coller PLC	
was presented the	- LAR
Crystal Award	TI
National - Extra Large category	
Dillin und social social	
154/3/hully/ Senil C. Wijeingto	Å
Newton Wickressandys Santil G. Wijesingfe Charman Chairman Chairman Cepton National Charber of Industries Parel of Indeps	T NT
and the second se	CH
	A
11th September 2009	ichig her

Industrial Excellence Crystal Award Extra Large Manufacturing Category -2009

Award for Excellence Performance in Material Effciency Manufacturing Large Category 2013 National Cleaner Production Award Large Category 2013

B2B Brand of the year at SLIM Brand Excellence 2015

Global Commerce Excellence Export Award 2014 Awarded by Shippers Academy in Association with Central Bank of Sri Lanka

In recognition of export and technological leadership created by ACL Cables PLC, which has significantly contributed to the growth of National Economy.

Power - X

DATA TABLES

Power - X COPPER

600 / 1000 V - ARMOURED CABLES WITH COPPER CONDUCTORS

Table - 1	1 CORE ARMOURED CABLES - Cu / XLPE / AWA / PVC20
Table - 2	2 CORE ARMOURED CABLES - Cu / XLPE / SWA / PVC with circular conductors21
Table - 3	3 CORE ARMOURED CABLES - Cu / XLPE / SWA / PVC with cirular conductors
Table - 4	3 CORE ARMOURED CABLES - Cu / XLPE / SWA / PVC with sector shaped conductors
Table - 5	4 CORE ARMOURED CABLES - Cu / XLPE / SWA / PVC with cirular conductors
Table - 6	4 CORE ARMOURED CABLES - Cu / XLPE / SWA / PVC with sector shaped conductors
Table - 7	4 CORE ARMOURED CABLES - Cu / XLPE / SWA / PVC with reduced Neutral conductors26
Table - 8	5 CORE ARMOURED CABLES - Cu / XLPE / SWA / PVC with circular conductors27

600 / 1000V - UNARMOURED CABLES WITH COPPER CONDUCTORS

Table - 9	1 CORE UNARMOURED CABLES - Cu / XLPE / PVC	28
Table - 10	2 CORE UNARMOURED CABLES - Cu / XLPE / PVC with circular conductors	29
Table - 11	3 CORE UNARMOURED CABLES - Cu / XLPE / PVC with cirular conductors	30
Table - 12	3 CORE UNARMOURED CABLES - Cu / XLPE / PVC with sector shaped conductors	31
Table - 13	4 CORE UNARMOURED CABLES - Cu / XLPE / PVC with cirular conductors	32
Table - 14	4 CORE UNARMOURED CABLES - Cu / XLPE / PVC with sector shaped conductors	33
Table - 15	4 CORE UNARMOURED CABLES - Cu / XLPE / PVC with reduced Neutral conductors	34
Table - 16	5 CORE UNARMOURED CABLES - Cu / XLPE / PVC with cirular conductors	35

POWER - X ALUMINIUM

600 / 1000V - ARMOURED CABLES WITH ALUMINIUM CONDUCTORS

Table - 17	1 CORE ARMOURED CABLES - AI / XLPE / AWA / PVC	36
Table - 18	2 CORE ARMOURED CABLES - AI / XLPE / SWA / PVC with circular conductors	37
Table - 19	3 CORE ARMOURED CABLES - AI / XLPE / SWA / PVC with cirular conductors	38
Table - 20	3 CORE ARMOURED CABLES - AI / XLPE / SWA / PVC with sector shaped conductors	
Table - 21	4 CORE ARMOURED CABLES - AI / XLPE / SWA / PVC with cirular conductors	40
Table - 22	4 CORE ARMOURED CABLES - AI / XLPE / SWA / PVC with sector shaped conductors	41

600 / 1000V -UNARMOURED CABLES WITH ALUMINIUM CONDUCTORS

Table - 23	1 CORE UNARMOURED CABLES - AI / XLPE /	PVC4	2
Table - 24	2 CORE UNARMOURED CABLES - AI / XLPE /	PVC with circular conductors4	.3
Table - 25	3 CORE UNARMOURED CABLES - AI / XLPE /	PVC with cirular conductors4	.4
Table - 26	3 CORE UNARMOURED CABLES - AI / XLPE /	PVC with sector shaped conductors4	.5
Table - 27	4 CORE UNARMOURED CABLES - AI / XLPE /	PVC with cirular conductors4	.6
Table - 28	4 CORE UNARMOURED CABLES - AI / XLPE /	PVC with sector shaped conductors4	.7

1900 / 3300V - ARMOURED CABLES WITH COPPER CONDUCTORS

	S - Cu / XLPE / AWA / PVC .	1 CORE ARMOURED CABLES	Table - 29
0 with cirular conductors49	G - Cu / XLPE / SWA / PVC	3 CORE ARMOURED CABLES	Table - 30
with sector shaped conductors50	- Cu / XLPE / SWA / PVC	3 CORE ARMOURED CABLES	Table - 31

600 / 1000V AUXILIARY CABLES

600 / 1000V - ARMOURED AUXILIARY CABLES WITH COPPER CONDUCTORS

Table - 32 1.5 mm² CORE ARMOURED CABLES - Cu / XLPE / SWA / PVC	51
Fable - 33 2.5 mm² CORE ARMOURED CABLES - Cu / XLPE / SWA / PVC	52
Fable - 34 4.0 mm² CORE ARMOURED CABLES - Cu / XLPE / SWA / PVC	

600 / 1000V - UNARMOURED AUXILIARY CABLES WITH COPPER CONDUCTORS

Table - 35	1.5 mm ²	CORE UNARMOURED CABLE	S - Cu / XLPE / PVC	54
Table - 36	2.5 mm ²	CORE UNARMOURED CABLE	S - Cu / XLPE / PVC	55
Table - 37	4.0 mm ²	CORE UNARMOURED CABLE	S - Cu / XLPE / PVC	56
SCHEDULE (OF INSTAL	LATION METHODS OF CABLES	57-	- 59

SUSTAINED CURRENT CARRYING

Table - 38	Single core unarmoured Cu/XLPE Cables with or without sheath	60
Table - 39	Multicore unarmoured Cu/XLPE & PVC Sheathed Cables	61
Table - 40	Single core armoured Cu/XLPE insulated Cables	62
Table - 41	Multicore armoured Cu/XLPE & PVC Sheathed Cables	63
Table - 42	Single core unarmoured AL/XLPE Cables with or without sheath	64
Table - 43	Multicore unarmoured AL/XLPE & PVC Sheathed Cables	65
Table - 44	Single core armoured AL/XLPE insulated Cables	66
Table - 45	Multicore armoured AL/XLPE & PVC Sheathed Cables	67
Table - 46	Single core armoured Copper Cables (1900/3300V)	68
Table - 47	Three core armoured Copper Cables (1900/3300V)	69

ADJUSTMENT TABLES

ADJ. TABLE 1 & 2	Variation in Ambient Temperature/ Variation in Ground Temperature70
ADJ. TABLE 3	Variation in Soil Thermal Resistivity71
ADJ. TABLE 4	Variation in Depth of Laying
ADJ. TABLE 5	Rating factors for more than one circuit, cables buried directly in the ground72
ADJ. TABLE 6	Rating factors for more than one circuit, cables in ducts buried in the ground73
ADJ. TABLE 7	Rating factors for one circuit or one multicore cable or
	for a group of circuits, or a group of multicore cables74

INSTALLATION OF POWER - X CABLES	
HANDLING INSTRUCTION FOR ACL CABLES DRUM	77
ALLOWABLE CABLE LENGTHS ON DRUMS	78-79
DRUM DIMENSIONS	

ACL – Since 1962

ACL is the largest manufacturer of cables in Sri Lanka having pioneered the industry in 1962. ACL holds 45% share of the local market and produce the widest range of cables in Sri Lanka. Today, ACL has grown to be a Group of companies holding 70% share of the cable market in Sri Lanka.

ACL is the most sought – after brand of cables in Sri Lanka, having supplied 80% of the requirements of Duty Free projects owned by overseas investors and approved by the Board of Investment, beating foreign supplies of cables. All leading factories, hotels, commercial buildings and warehouses have used ACL Cables.

ACL continues to innovate and lead the field in the introduction of new products modern technology and machinery. In the five decades of it's existence, the Company has evolved as a specialized manufacturer and supplier of the widest range of quality cables and conductors in the country, while possessing the **most advanced technology in the Asian region** for the manufacture of low voltage Cross Linked Polyethylene cables (XLPE).

Concept at ACL

Modern industries and technologies have opened forth a wide range of endeavors and ventures in the Island of Sri Lanka. ACL ushered a new era in power sector and dedicated itself to the cause of transmission, distribution and utilization of electrical energy for all cross sections of the country. With a rich heritage of over five decades, ACL offers it's products, which not only meet the stipulated requirements of the governing National and International specifications, but far exceeding them.

Excellence through "Total Quality Management" is the catchword at ACL. Since its inception ACL has striven not only to upgrade the product quality but to bring into practice superior management of men to make its place in the international market. Professionalism, advanced know – how and technology, customer services have been the hallmark of ACL. Its concept is translated into every length of product through co – ordinated efforts of professionals on job.

ACL Technology

From the inception ACL has been acquiring foreign technology for the development of existing and new products. In the year 1962, ACL commenced business with technical assistance arranged through the Colombo based liaison office of Mitsui. The Japanese Technology, Machinery, & Engineers helped ACL to establish a Foundation of Quality products. Thereafter, ACL joined hands with two cable companies in India to establish the manufacture of Aluminum Conductors and Armored Cables.

One of the company's most notable technology transfer agreements in recent times have been with NOKIA Cables of Finland for the manufacture of XLPE insulated Cables, Aerial Bundled Cables and Aluminum Alloy Conductors.

Having obtained technology from NOKIA on two occasions in the year 1989 and 1993, ACL upgraded its technology on XLPE insulated Aerial Bundled Cables to surpass National French Standard NFC 33 – 209 in the year 1998 through its own Research and Development. This I a feat not matched in the region by any other manufacturer at that time. The technology so achieved is employed in the manufacture of XLPE insulated Armoured and Unarmoured power cables. These developments offer many benefits to valued customers and in order to highlight those benefits it was decided to name all our XPLE insulated cables under the brand name **Power – X.**

Having obtained ISO 9002 certification in the year 1998, ACL was awarded the prestigious ISO 9001 – 2000 certificate in the Year 2002. In the same year ACL was awarded ISO 14001 : 1997 Environmental Management Systems Certification.

ACL - TECHNOLOGICAL DEVELOPMENT

- 1962 Establishment of ACL with technical assistance from Mitsui of Japan.
- 1978 Introduction of Wire Drawing facility.
- 1981 Acquisition of Technology from Alind of India for drawing and processing of Aluminium Conductors to jointly manufacture and supply 1400 MT of AAC-Fly Conductor to Ceylon Electricity Board.
- 1985 Manufacture of Armoured Power and Control Cables for the first time in Sri Lanka with Indian Technical assistance.
- 1989 Acquisition of Technology from NOKIA of Finland to jointly manufacture XLPE insulated Aerial Bundled Cables to execute an order for 800 km of that product on an ADB funded tender floated by Lanka Electricity Company.
- 1993 Acquisition of Technology from NOKIA of Finland to draw and age Aluminium Alloy and establishment of aging furnace.
- 1993 Establishment of ACL Plastics Limited for the manufacture of our own PVC Compound.
- 1994 Pilot Project for 11kV partially insulated conductors working with Ceylon Electricity Board.
- 1998 Successfully upgraded XLPE Extrusion Technology to National French Standard NFC 33-209 and won 500 km order for Aerial Bundled Cables from Ceylon Electricity Board.

Page 4

- 2005 Introduction of Flame Retardant (FR), Flame Retardant Low Smoke (FRLS) and Low Smoke Halogen Free (LSHF) cables with technical assistance from a British Company.
- 2007 Setting up of Aluminium Rod Plant with a total capacity of 24000 Metric Tons per annum.
- 2010 Re launch of 11 kV & 33 kV ACL SAX as per new specifications of CEB with the second pilot project.
- 2013 Manufacture of Fire Survival cables to maintain circuit integrity under fire conditions in accordance with BS 6387:1994, for the first time in Sri Lanka.

ACL - CORPORATE HIGHLIGHTS

- 1962 Commencement as a member of Associated Motorways Group (AMW) of Companies under the name Associated Cables Ltd.
- 1976 Converted to a Public Limited Liability Company.
- 1978 Moved out of AMW Group.
- 1982 Establishment of own island wide distribution network.
- 1990 Change of Company name in to ACL Cables Limited
- 1991 Establishment of ACL Plastics Limited
- 1995 Acquisition of Ceylon Bulbs and Electricals Limited.
- 1999 Purchase of 75% of shares of the second largest cable manufactuer in the Island.
- 2002 Setting up of state of the art Magnet Wire project.
- 2007 Establishment of ACL Metals & Alloys (PVT)Ltd.
- 2011 Setting up of Copper Plant
- 2011 Shifting of ACL Head Office to newly constructed four storied own building at Colombo 08.
- 2013 Establishment of ACL Electric PVT (Ltd) for manufacture of switches

OTHER ACHIEVEMENTS OF ACL

- 1995 Commencement of Export of Cables In August 1995 US\$ 269,650/- worth of Alloy Conductors were exported to Rural Electrification Board, Bangladesh. In November 1995 US\$ 117,609/- worth of Armoured Cables were exported to Maldives Electricity Board, Maldives.
- 1998 Achievement of ISO 9002:1994 Quality Management System Certificate Achieved prestigious ISO 9002:1994 Quality Management System Certificate.
- 2002 Achievement of ISO 9001: 2000 Quality Management System Certificat Achieved prestigious ISO 901:2000 Quality Management System certificate.
- 2002 Introduction of "ACL FLEXI" cables to the Sri Lanka market. Introduced a series of domestic wires with super flexibility in the range of 1.0mm² - 6mm².
- 2002 Achievement of ISO 14001:1997 Environmental Management System Certificate Achieved prestigious ISO 14001:1997 Environmental Management System Certificate.
- 2004 Large scale export of Aerial Bundled Cables to India.
- 2004 Achievement of IS 694 Product Certificate from Bureau of Indian Standards.
- 2007 Taiki Akimoto 5 S Merit Award.
- 2007/2008 Industrial Excellence Gold Award in Extra Large Manufacturing category.
- 2007 National Quality Award Large Scale Manufacturing category (highest award for Quality in Sri Lanka).
- 2007 National Productivity Award Large Scale Manufacturing category (highest award for Productivity in Sri Lanka).
- 2008 Highest Award of Asia Pacific Quality Organization called the World Class Award (A record to date among all Sri Lankan manufactures).
- 2008 Commencement of Export of cable to Australia.
- 2009 Industrial Excellence Crystal Award in Extra Large Manufacturing category.
- 2011 Commencement of Export of cable to New Zealand.
- 2013 National Cleaner Production Award in recognition of Excellence in Resource Efficient & Production Practices in Manufacturing Large Category.
- 2013 Special Award for Excellence Performance in Material Efficiency in Manufacturing Large Category.
- 2015 B2B Brand of the Year Gold. At Slim Brand Excellence 2015.

"ACL" - PRODUCTS

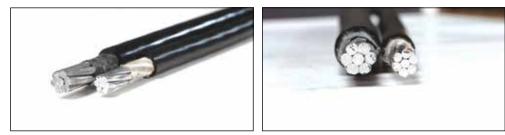
BARE CONDUCTORS

All Aluminium Conductors (AAC)

All Alluminium Alloy Conductors (AAAC)

Aluminium Conductors Steel Reinforced (ACSR/GZ ,ACSR/AC) to BS, ASTM, CSA and DIN, Standards. Sizes up to 750mm2

For low, medium and high voltage electricity, transmission and distribution. * BS 215 Part 1, BS 215 Part 2, BSEN 50183, SLS 750 Part 1, SLS 750


Part 2, IS 398 Part 1, IS 398 Part 4

Traditional Bare Conductors are prone to failure due to vegetation. A superior alternative to Bare Conductors are Fully Insulated Cables (Underground or aerial) but those are prohibitively expensive for country wide usage. Therefore, ACL has developed a range of Partially Insulated Conductors (Covered Conductors) branded as ACLSAX –V which is relatively in-expensive. The extensive Research & Development done by ACL, has made ACLSAX-V, not only to meet BSEN 50397-1:2006, but to surpasses it. In addition, ACL joins hands with ENSTO of Finland to supply their Fittings along with ACLSAX-V Conductors since it is absolutely essential to use (a) Correct Conductors, (b) Correct Fittings and (c) Correct installation Techniques as specified by the 3 separate British standards covering Partially Insulated Conductors. Without such rigorous adherence to Standards, Partially Insulated Conductors may fail to deliver optimum results as we have seen in some parts of the world. Therefore, ACL promotes ACLSAX-V as a Complete System.

The three BS standards are

* BSEN 50397-1:2006, BSEN 50397-2 :2009 & BSEN 50397-3:2010

"ACL SAX " COVERED CONDUCTORS (CC)

This is an area where ACL lead the Asian region and remain second to none in the World. Partially Insulated Conductors or Covered Conductors are used for medium voltage distribution of electricity by Power Distribution companies to improve Reliability and Safety.

HOUSE/BUILDING WIRES

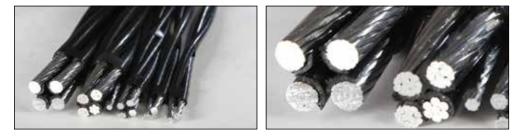
Cu/PVC and Cu/PVC/PVC cables to BS, SLS, IS & IEC Standards in 300/500V, 450/750V, 1100V and 600/1000V sizes $1 mm^2$ to $1000 mm^2$

Single core upto 1000mm² 3 or 3 1/2 core upto 400mm² Cu/PVC Green Earth Wire 2 Core up to 70mm² 4 core up to 400mm²

For wiring of houses/commercial buildings and distribution of electricity within factories. BS 6004, BS 6346, SLS 733, SLS 987, IS 694, IS 1554, IEC 60502 These total range is now available in fire retardant, low smoke, halogen free properties.

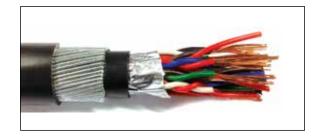
ARMOURED & UNARMOURED POWER CABLES

To BS, IEC, SLS Standards 600/1000V & IS 1100V -Cu or AI, PVC insulated and Cu or AI, XLPE insulated Power cables single core up to 1000mm² 2 Core up to 400 mm² 3 or 3 1/2 Core upto 400mm² 4 Core up to 400 mm² 5 Core up to 50mm² For distribution of electricity within cities, factories and buildings. * BS 6346, BS 5467, SLS 1186, IS 1554, IEC 60502


CONTROL CABLES

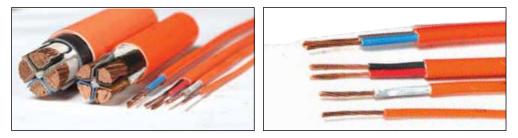
Cu/PVC Control Cables sizes 1.5mm², 2.5mm², and 4mm².Number of cores range from 5 to 48 cores and conform to BS 6346,600/1000 V and IS 1554 1100V. Can be armoured or unarmoured and either screened or unscreened.

* BS 6346, IS 1554


XLPE INSULATED AERIAL BUNDLED CABLES (ABC)

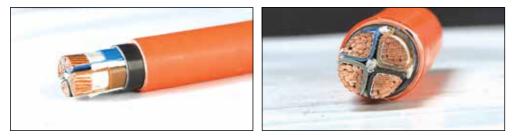
To NFC 33-209, 600/1000V and IS 14255, 1100V Size 16mm², 25mm², 35mm², 50mm², 70mm², 95mm², 120mm², (2 core, 4 core, 5 core and 6 core) for rural and semi-urban low voltage distribution of electricity.

* NFC 33-209, IS 14255


INSTRUMENTATION CABLES

Multicore, screened instrument cables, conductor of annealed solid/stranded/flexible copper/tinned copper, insulated with PVC/PE, twisted pair/triode/quad, screened with mylar aluminium and provided with copper drainwire, laid up circular, overall screened and finally sheathed with PVC/PE for data and signal transmission without external interference.

ACL Fire Retardant Cables – FR, FRLS & LSHF



ACL FIRE RETARDANT Cables are to be used in any building in lieu of traditional PVC insulated Cables – which spread a fire easily. The main function of Fire Retardant Cables is to prevent spread of fire originated probably due to an electrical short circuit.

ACL has 3 different grades of Fire Retardant Cables. 1. ACL FIREGUARD (FR), 2. Fire Retardant Low Smoke (FRLS) – both made of modified PVC. Third variety is ACL FIREZERO (LSHF) which unlike the other two, is completely free of PVC and is the highest grade of Fire Retardant Cable manufactured and recommended by ACL. Since All FIREZERO is free of PVC, it emits negligible amounts of Acidic gasses and Smoke even if it is caught in a fire. These Cables conform to following standards -

* ASTM D2863 :2013 ,IEC 60332-1:2004 ,IEC 60754-1:2011, IEC 61034-2 :2005 &IEC 60754-2:1997

ACL Fire Resistant Cables – ACL FIRESURVIVOR

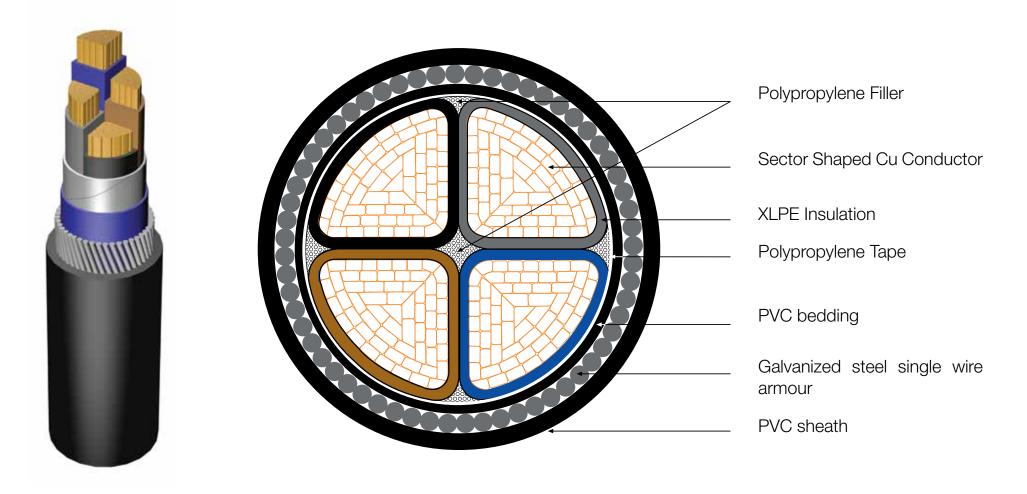

These cables are needed to supply electricity to circuits which become critically important in the midst of a Fire. In a building caught on fire, Electrical circuits providing electricity to Fire Alarms, Escape Lights, Exhaust Fans, Sprinklers, Lifts etc. become critically important not only to extinguish the fire but also to help in evacuation of people.

Cables for those equipment should be wired with ACL FIRESURVIVOR Cables which can provide uninterrupted electricity (circuit integrity) in the midst of a fire having a temperature of 950 deg centigrade for 3 hours. These Cables conform to the following standards -

* BS 6387:2013 & IEC 60331-21 :1999-04

* CWZ - PLWRI

COPPER BUS BARS AND BUS BAR DUCT SYSTEMS



Bus bar systems" refers to conductors that take the form of a bar or bars of copper conductor. The bars may be exposed or enclosed. Bus bars are used within electrical installations for distributing power from a supply point to a number of output circuits. They may be used in a variety of configurations ranging from vertical risers, carrying current to each floor of a multi-storey building, to bars used entirely within a distribution panel or within an industrial process related switchboard, distribution board , substation panels and ,battery banks, ect .

These bus bars or bus bar duct systems may have one or more joints to assure proper length and configuration and one or more take-off points connected to end-use equipment.

it is necessary to use more expensive grade of high conductivity copper which is specially produced for this purpose. This type of copper, known as 'oxygen-free high conductivity copper', is normally produced by melting and casting under a protective atmosphere. The result is a high purity copper containing 99.95% copper. In additionally, these products are fully type tested to the standard of. IEC 60439-2 & 3

Cross Sectional Drawing of 4 Core Armoured Cable

ACL Facilities

State of the art manufacturing facilities and testing equipment from leaders of Europe, ensure highest standards of products.

12 channel copper upward casting induction furnace for the manufacture of 8mm diameter oxygen free copper rods .

Aluminium melting furnace and rod mill for the manufacturing of 9.5mm diameter Aluminum and Aluminum Alloy Rods.

Annealed Copper without dust being drawn at 30m/sec on 15 draft angular shaft. Separate motor driven Sictra rod break down machine

Seven Strand Aluminium conductor is being stranded on 1400 rpm 630 DIN bobbin Skip Strander at 150m/min

Batch loading of Copper wires in 630 DIN Spools on 61 strand high speed Tandem Strander.

Extrusion of outer sheath of 4x400mm² at the rate of 800kg of PVC per hour on an 120mm Extruder.

Assembly of an Aerial Bundled Cable on a Bow strander machine at 180m/min

Heavy duty, high boddin weight, Planetary Strander line for assemblins of LA / MV Aerial Bundled Cables

Drum Twister Machine for the assembly and armouring of Power Cables

Centralized warehouse for live inventory management

QUALITY ASSURANCE DEPARTMENT

Testing facilities

Electronic Tensile Tester - To Obtain tensile stregth & elongation values of Power - X Cables up to $4 \times 400 \text{ mm}^2$.

Oxygen index and temperature index tester for the testing of fire retardant properties of low smoke halogen free power cables.

High precision automatic Resisrana Bridge used for the measurement of electrical resistance of Power - X Cables up to 1000 mm²

Testing of vertical flame spread of vertically mounted bunched wires or cables .

Testing of vertical flame spread of low smoke halogen free power cables.

Measuring of the vertical flame propagation of low smoke halogen free power cables.

Profile Projector & Digimatic mini Processor -To obtain accurate measurement of thickness of insulated cores of Power - X Cables.

ACL POWER - X

A UNIQUE ACHIEVEMENT IN THE REGION

One of the biggest technological break throughs of ACL is the development of XLPE technology for Aerial Bundled Cables (ABC) to highest standards of the world namely, National French Standard NFC 33-209. Having acquired technology from Nokia of Finland in the year 1989, ACL upgraded its XLPE technology through in-house research and development to surpass NFC 33-209. Benefits of these developments are applied to other XLPE cables as well. Therefore, ACL leads the low voltage XLPE technology in the region. This is the reason why ACL market XLPE cables under the trade name Power-X. For XLPE insulated ABC.ACL remains the only manufacturer in the region to have a comprehensive Type Test Reports in line with NFC 33-209:1996 2nd publication, September 2005 and issued by Laboratoiree Central Des Industries **Electrique of France**

POWER-X CABLES

Listed in this publication are products manufactured in accordance with

- 1) BS 5467:1997 600/1000V and 1900/3300V "Armoured electric cables Incorporating having thermosetting insulation."
- 2) BS 5467:1989 "Cables with thermosetting insulation for electricity supply for rated voltage of up to and including 600/1000V and up to and including 1900/3300V
- 3) BS 7889:1997 "600/1000V single core unarmoured electric cables having thermosetting insulation."
- 4) IEC 60502-1 :2004 "Power cables with extruded insulation and their accessories for rated voltages"

GENERAL CONSTRUCTION CONDUCTOR

Copper conductors are manufactured from plain, annealed, high conductivity, drawn copper wires according to BS 6360:1991. In single core cables all conductors are circular while multicore cables conductors are generally circular up to 16 sq.mm and shaped above 16 sq.mm.

BS specifies only solid aluminium conductors for power cables. However, in this publication stranded aluminium conductors have been considered for better flexibility and ease in installation. These conductors are made from aluminium of the grade 1350 as specified in BS 2627.

INSULATION

Insulation consists of GP 8 XLPE Compound complying with BS 7655:section 1.3/1.2:1993 "insulation and sheathing materials for cables" which is applied by extrusion to form a compact homogeneous layer.

CORE IDENTIFICATION

No. of Cores	Core colour
Single	Brown or Blue
Two	Brown, Blue
Three	Brown, Black, Grey
Four	Brown, Black, Grey, Blue
Five	Green and Yellow,Blue, Brown, Black, Grey
Six core and above for	Black with number printed in white.
Auxiliary cables	

FILLERS AND BEDDING

The cable cores are laid up with circular fillers of non-hygroscopic material between the cores where necessary. Single core cables have extruded PVC bedding whilst multicore cables have either PVC extruded bedding or at least two layers of suitable tape to provide bedding for the armour.

ARMOUR

To protect the cable from mechanical damage and to provide earth continuity, armour is provided with wires, helically applied over the bedding. Multicore armoured cables are armour with single layer of galvanized round steel wires, while single core cables intended for use in A/C systems are armoured with non-magnetic materials, i.e. aluminium wires.

OVER SHEATH

All cables are provided with an extruded outer sheath of black PVC complying with the requirements of BS 7655: section 4.2: 1997. Outer sheath of special PVC with 85°C operating temperature or anti-termite properties may be provided, if specified.

EMBOSSING AND MARKING (XLPE)

The oversheath of each cable is embossed with legend ACL ELECTRIC CABLES followed by voltage grade, size and type. If required, the cables could be supplied with sequentially marked length. Where the cable is multicore, the ends of each length are marked red or green. The sequence of core colour is clockwise at red marked end.

CROSS-LINKED POLYETHYLENE

PVC and conventional polyethylene (PE) are thermoplastic materials. By the use of a special additive and post extrusion treatment in a manner resembling the vulcanization of rubber, the properties of polyethylene are considerably changed because it becomes cross-linked and thermosetting. The good attributes of polyethylene are still retained, but at high temperatures the toughness and physical properties are improved. In particular there is greatly enhanced resistance to deformation. This provides an important advantage in cable ratings.

ACL technology on XLPE is vastly superior to many available in the market and therefore, traded under the brand name "Power-X".

COMPARISON WITH PVC INSULATED CABLES

The basic construction of XLPE cables is similar to that of PVC cables produced to BS 6346. Therefore, they have all the advantages of PVC cables in terms of cleanliness, ease of handling and simple jointing. The only obvious physical difference is that XLPE is a more robust material, thus allowing the insulation thickness to be reduced, which in turn allows a corresponding reduction in the overall size of the cable.

The main consideration in a comparison with PVC cables is that XLPE permits the operating temperature of the cable to be raised considerably without suffering from thermal deformation or degradation. Continuous ratings for XLPE are based on 90°C instead of 70°C for PVC and short circuit ratings are vastly improved. Moreover if conductor size is governed by rating rather than voltage drop, it is often possible to use a smaller cable. Furthermore, the short-circuit temperature of PVC is only 150°C while that of XLPE is 250°C. This makes XLPE insulated cables durable and more resilient to short - circuiting.

Used for generator wiring, switchgear wiring appliance and equipment wiring where cable is subject to bending/mobility during installation and/or use.

MAIN TECHNICAL CHARACTERISTICS	COMPARISION OF PVC vs XLPE									
	Units									
		PVC TYPE 9	PVC TI 1	PVC TM 1	XLPE					
Permitivity (50Hz,20 °C)			4 - 7		2.3-5.2					
Dielectric Loss Factor(50Hz,20 °C)			0.05 - 0.07		0.0004					
Volume Resistivity(20 °C)	ohm.cm		10 ¹³		10 ¹⁶					
Max. Conductor temperature	0C		70		90					
Max. short circuit temperature of conductor	Oo		160		250					
Tensile strength of insulation min.	N/mm ²	12.5	12.5	12.5	12.5					
Elongation at break of insulation min	%	150	125	125	200					
Insulation Resistance constant (Min. K value)	MΩ.Km	at 20 °C	at 70 ⁰C		at 90 °C					
		0.0035	0.0035	-	3.67					
Thermal Ageing Characteristics										
Maximum Variation -Tensile strength	%	25	20	20	25					
		(at 100ºC ,168 hrs)	(at 80°C ,168 hrs)	(at 80°C ,168 hrs)	(at 135°C ,168 hrs)					
Maximum Variation -Elongation at break	%	25	20	20	20					
		(at 100°C ,168 hrs)	(at 80°C ,168 hrs)	(at 80ºC ,168 hrs)	(at 135ºC ,168 hrs)					

PROPERTIES OF COPPER & ALUMINIUM

Characteristics	Units	COF	PPER	ALUMINIUM		
		Hard Drawn	Annealed	Hard Drawn	Annealed	
Melting Point	°C		1083		659	
Specific Gravity	-		8.89		2.703	
Tensile Strength	kgf/mm ²	34-47	20-28	12-20	7-14	
Electrical Resistivity at 20ºC	mW-cm	1.777	1.724	2.8264	2.803	
Conductivity at 20°C	%IACS	97	100	60	61	
Temperature Coefficient of Resistance at 20°C per °C	-	0.00381	0.00393	0.0040	0.0042	
Coefficient of Linear Expansion	10 ⁻⁶ / ⁰ C		17		23	
Thermal Conductivity	W/⁰C.cm		3.85		2.39	
	Cal/ºC.S.cm		0.92		0.53	
Specific Heat	J/ºC.cm ³		3.4		2.4	
	Cal/ºC.g		0.092		0.21	

NOTES ON TABLES

Dimensions and Weights

All dimensions and weights given in the tables are approximate. When selecting a suitable gland size for these cables it will be advisable to allow for a small positive tolerance on the dimensions given.

Bending Radius

During installation, XLPE cables should not be bent to a radius smaller than that are given in the appropriate tables.

Sustained Current Rating (50Hz AC)

Generally, the current rating will be altered if there is a variation in the standard conditions. The rating for most conditions can be calculated by multiplying the sustained current rating by the factor(s) given in the appropriate adjustment table(s). Current Ratings given in this book are extracted from ERA Report 69-30 (part V).

Standard Conditions

The following conditions have been used to calculate the current ratings given in the tables:

Thermal resistivity of soil (g)	=	2.5 K .m/W
Standard Ground Temperature	=	20°C
Ambient Air Temperature	=	30°C
Maximum conductor Temperature	=	90°C
Depth of burial, from ground surface to	=	0.7 m for 600/1000V cables
Centre of cable, to center of duct,		
or to centre of trefoil group of cables or ducts		

All armoured cables solidly bonded (ie. Bonded at both ends of the cables)

Bonding of Non-magnetic Armour of single core cable

Ratings are given for single-core cables with non-magnetic armour solidly bonded (bonded at both ends of the cables.) Slightly higher ratings may be achieved by single point bonding (binding at one point only along the cable length) although in practice, application will be limited and confined mainly to short runs of the larger conductor size.

Overload Conditions

Cross-linked polyethylene cables can, without undue detriment safely operate at an increased conductor temperature of 130°C subject to a maximum aggregate period of 36 hours per annum.

The permissible current rating under overload conditions is given by multiplying the sustained current rating by the factor given in the appropriate adjustment table on tables.

Short-circuit Current Ratings

In addition to the normal sustained current ratings, consideration must also be given to short circuit ratings when selecting cable size. Ratings for given durations are listed in the tables.

Note :

The following formula can be used to obtain the value of short circuit current, I in kA for any time t seconds between 0.2 and 3.0 seconds.

$I = I_1 / (t)^{\frac{1}{2}}$

Where $I_1 =$ short – circuit current in kA for 1.0 second,

short circuit ratings are based on :

- Symmetrical conductor temperature rise, 90°C to 250°C.

– Earth fault armour temperature rise 85°C to 160°C

Voltage Drop

To calculate the voltage drop in volts the tabulated value of voltage drop (mV/A/m) is to be multiplied by the design current of the circuit (I), the length of run in meters (L), and divided by 1000 (to convert to volts)

Voltage Drop = $\frac{(mV/A/m) \times I \times L}{1000}$

Permissible voltage drop through out the complete installation is 4% of the nominal supply voltage. (generally 230V for single phase and 415V for three phase in Sri Lanka)

OTHER CONSTRUCTIONS

All cables listed in this publication are complying with the relevant British standards. It is possible to supply cables with minor differences in construction if sufficient quantity is required.

In this connection it should be noted that cables in accordance with IEC standards or any other standards specially manufactured on request.

GUIDELINES FOR THE SELECTION OF THE REQUIRED SIZE OF CABLE

To select a suitable size of cable :

- 1. Find out the actual cable current of the load by considering its system polarity (d.c. or single phase a.c or three phase a.c.)
- 2. By considering the method of installation, find out weather there are any de-rating factors applicable to the situation.
- 3. Go through the applicable sustained Current rating table and select a cable which is having a slightly higher current rating.
- 4. Multiply by applicable de-rating factors and adjust the current rating accordingly. This adjusted current rating should be higher than the required current. If it is not, consider the next higher size of cable.

Now, check for voltage drop :

- 1. Take the voltage drop value from the data tables relevant to the selected cable. (mV/A/m)
- 2. Multiply by the actual current in the cable (NOT the current rating)
- 3. Multiply by the length of run. (m)
- 4. Divide the result by 1000 to convert milli volts in to volts.

Example :

85m of four core Cu/XLPE/SWA/PVC cable has to be installed direct in ground to carry 95A load. Supply voltage is 415V, three phase system 50Hz a.c. Following installation conditions are to be considered when selecting a suitable cable :

Ambient air temperature	=	30ºC	Ground temperature	=	20°C
Depth of laying	=	0.5m	Soil thermal resistivity	=	1.5 Km/W

This cable is to be laid parallel and in touching formation to an existing cable which carries same load.

In this example, the required current is given as 95A.

From Table 41, we can select 4x25 Cu/XLPE/SWA/PVC CABLE which is having a sustained current rating of 96A.

Now consider the given installation conditions and find out applicable de-rating factors to find out the actual current rating.

For ambient temperature	=	1.00 (from Adj. Table 1)
For Ground temperature	=	1.00 (from Adj. Table 2)
For soil thermal resistivity	=	1.28 (from Adj. Table 3)
For depth of laying	=	1.03 (from Adj. Table 4)
For grouping	=	0.75 (from Adj. Table 5)
Actual Current Rating	=	96 x 1 x1x 1.28 x 1.03 x 0.75
	=	94.9 A

94.9A < 95A (required rating). Therefore, actual current rating of the selected cable is not sufficient for this application. It is required to select the next higher size.

i.e. 4x35 Cu/XLPE/SWA/PVC (X-50)

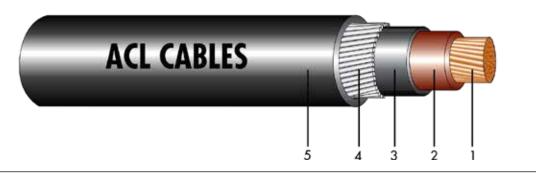
Actual Current rating	=	115x1.0x1.0x1.28x1.03x0.75
	=	113.7 A
113.7A > 95A This cable sati	sfies	s the requirement.
Now Chaple for voltage drep i		

Now Check for voltage drop :

for X - 50 voltage drop = 1.15mV/A/m (from table 41)

Actual Voltage drop = $\frac{mV/A/m \times I \times L}{1000}$

Therefore, Actual voltage drop = $1.15 \times 95 \times 85$

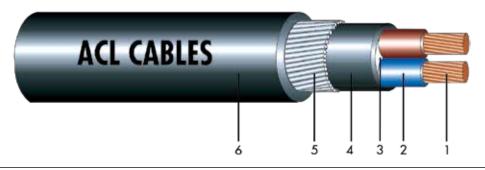

This should be checked against the permissible voltage drop which is 5% of the nominal system voltage. Permissible voltage drop $= 5 \times 415 = 20.75$ V

100

actual volt drop 9.28V < permissible volt drop 20.75V

Therefore, the selected cable satisfies the permissible voltage drop requirement.

Cu Conductor
 XLPE Insulation
 PVC Bedding
 Al Wire Armour
 PVC Sheath


600/1000V BS 5467:1997

1 Core Armoured Cables - Cu/XLPE/AWA/PVC

ITEM CODE Nominal Area of Conduc	tor	UNIT sq.mm	X-1 50	X-2 70	X-3 95	X-4 120	X-5 150	X-6 185	X-7 240	X-8 300	X-9 400	X-10 500	X-11 630	X-12 800	X-13 1000
Nominal Thickness of ins	sulation	mm	1.0	1.1	1.1	1.2	1.4	1.6	1.7	1.8	2.0	2.2	2.4	2.6	2.8
Thickness of Extruded b	edding	mm	0.8	0.8	0.8	0.8	1.0	1.0	1.0	1.0	1.2	1.2	1.2	1.4	1.4
Aluminium Armour wire di	ameter	mm	0.9	1.25	1.25	1.25	1.6	1.6	1.6	1.6	2.0	2.0	2.0	2.5	2.5
Thickness of oversheath		mm	1.5	1.5	1.6	1.6	1.7	1.8	1.8	1.9	2.0	2.1	2.2	2.4	2.5
Maximum armour resista	nce at 20ºC	ohm/km	1.3	0.75	0.67	0.61	0.42	0.38	0.34	0.31	0.22	0.20	0.18	0.13	0.12
Gross armour wire area		sq.mm	26	42	47	52	76	84	94	104	147	163	182	260	284
Maximum resistance	D.C. at 20º C	ohm/km	0.387	0.268	0.193	0.153	0.124	0.0991	0.0754	0.0601	0.0470	0.0366	0.0283	0.0221	0.0176
of Conductor	A.C. at 90° C	ohm/km	0.493	0.341	0.246	0.196	0.159	0.128	0.098	0.079	0.063	0.051	0.042	0.036	0.032
Inductance		mH/km	0.327	0.319	0.306	0.295	0.300	0.295	0.284	0.278	0.279	0.274	0.269	0.268	0.263
Reactance at 50Hz		ohm/km	0.103	0.100	0.096	0.093	0.094	0.093	0.089	0.087	0.088	0.086	0.085	0.084	0.083
Impedance at 90°c		ohm/km	0.504	0.355	0.264	0.217	0.185	0.158	0.133	0.118	0.108	0.100	0.094	0.092	0.089
Maximum symmetrical	for 0.2 Sec	kA	16.0	22.4	30.4	38.4	48.0	59.2	76.8	96.0	128.0	160.0	201.6	256.0	319.9
short - circuit	for 1.0 Sec	kA	7.2	10.0	13.6	17.2	21.5	26.5	34.3	42.9	57.2	71.5	90.1	114.5	143.1
ratings	for 3.0 Sec	kA	4.1	5.8	7.8	9.9	12.4	15.3	19.8	24.8	33.0	41.3	52.0	66.1	82.6
Maximum earth - fault	for 0.2 Sec	kA	4.0	6.4	7.2	8.0	11.7	12.9	14.4	16.0	22.5	25.0	27.9	39.9	43.6
short - circuit	for 1.0 Sec	kA	1.8	2.9	3.2	3.6	5.2	5.8	6.4	7.1	10.1	11.2	12.5	17.8	19.5
current ratings	for 3.0 Sec	kA	1.0	1.7	1.9	2.1	3.0	3.3	3.7	4.1	5.8	6.5	7.2	10.3	11.2
Approximate overall diam	ieter	mm	17.5	20.2	22.3	24.2	27.4	30.0	32.8	35.6	40.5	44.2	48.8	55.4	60.6
Approximate Cable weigh	nt	kg/km	689.0	958.8	1256.6	1526.6	1917.2	2346.0	2959.9	3619.2	4655.0	5741.1	7221.3	9267.5	11459.1
Minimum bending radius		mm	105	121	134	145	164	180	197	214	243	265	293	332	364
Nominal Drum Length		m	1000	1000	1000	1000	1000	750	750	500	500	500	250	250	250
Size of the Drum			D - 2	D-3	D-3	D-5	D-5	D-5	D-5	D-5	D-5	D-8	D-7	D-9	D-12
Drum Weight		kg	138	145	145	225	225	225	225	225	225	255	245	265	510
Gross weight of the Cable	Drum	kg	827	1104	1402	1752	2142	1985	2445	2035	2553	3126	2050	2582	3375

TABLE - 1

Cu Conductor
 XLPE Insulation
 Poly Propylene Fillers
 PVC Bedding
 Galvanized Steel Wire Armour
 PVC Sheath

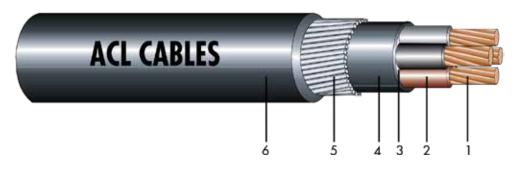
2 Core Armoured Cables - Cu/XLPE/SWA/PVC With Circular Conductors

ITEM CODE Nominal Area of Conduc	ctor	UNIT sq.mm	X-14 1.5	X-15 2.5	X-16 4	X-17 6	X-18 10	X-19 16	X-20 25	X-21 35
Nominal Thickness of in	sulation	mm	0.6	0.7	0.7	0.7	0.7	0.7	0.9	0.9
Thickness of Extruded b	mm	0.8	0.8	0.8	0.8	0.8	0.8	0.8	1.0	
Galvanized Steel Armour	mm	0.9	0.9	0.9	0.9	0.9	1.25	1.25	1.6	
Thickness of oversheath	mm	1.3	1.4	1.4	1.4	1.5	1.5	1.6	1.7	
Maximum armour resista	ance at 20ºC	ohm/km	10.2	8.8	7.9	7.0	6.0	3.7	3.7	2.6
Gross armour wire area		sq.mm	15	17	19	22	26	42	42	60
Maximum resistance	D.C. at 20° C	ohm/km	12.1	7.41	4.61	3.08	1.83	1.15	0.727	0.524
of Conductor	A.C. at 90° C	ohm/km	-	-	-	-	-	1.460	0.927	0.668
Inductance		mH/km	-	-	-	-	-	0.251	0.252	0.246
Reactance at 50Hz		ohm/km	-	-	-	-	-	0.079	0.079	0.077
Impedance at 90°c		ohm/km	-	-	-	-	-	1.462	0.930	0.672
Maximum symmetrical	for 0.2 Sec	kA	0.5	0.8	1.3	1.9	3.2	5.1	8.0	11.2
short - circuit current	for 1.0 Sec	kA	0.2	0.4	0.6	0.9	1.4	2.3	3.6	5.0
ratings	for 3.0 Sec	kA	0.1	0.2	0.3	0.5	0.8	1.3	2.1	2.9
Maximum earth - fault	for 0.2 Sec	kA	1.3	1.4	1.6	1.8	2.2	3.5	3.5	5.0
short - circuit current	for 1.0 Sec	kA	0.6	0.6	0.7	0.8	1.0	1.6	1.6	2.3
ratings	for 3.0 Sec	kA	0.3	0.4	0.4	0.5	0.6	0.9	0.9	1.3
Approximate overall dian	neter	mm	12.1	13.6	14.7	15.9	18.0	20.4	24.1	27.7
Approximate Cable weig	ht	kg/km	253.5	322.1	388.7	472.0	632.7	930.4	1298.5	1788.1
Minimum bending radius	3	mm	73	82	88	95	108	122	145	166
Nominal Drum Length		m	1000	1000	1000	1000	1000	1000	750	500
Size of the Drum			D-1	D-1	D-1	D-2	D-2	D-4	D-4	D-4
Drum Weight		kg	60	60	60	138	138	150	150	150
Gross weight of the Cable	e Drum	kg	314	382	449	610	771	1080	1124	1044

Cu Conductor
 XLPE Insulation
 Poly Propylene Fillers
 PVC Bedding
 Galvanized Steel Wire Armour
 PVC Sheath

3 Core Armoured Cables - Cu/XLPE/SWA/PVC With Circular Conductors

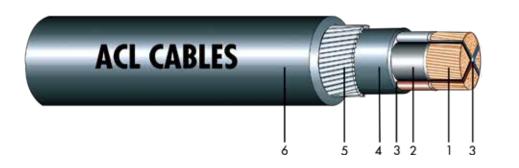
						-				
ITEM CODE Nominal Area of Conduc	tor	UNIT sq.mm	X-22 1.5	X-23 2.5	X-24 4	X-25 6	X-26 10	X-27 16	X-28 25	X-29 35
Nominal Thickness of in	mm	0.6	0.7	0.7	0.7	0.7	0.7	0.9	0.9	
Thickness of Extruded b	mm	0.8	0.8	0.8	0.8	0.8	0.8	1.0	1.0	
Galvanized Steel Armour	mm	0.9	0.9	0.9	0.9	1.25	1.25	1.6	1.6	
Thickness of oversheath	mm	1.3	1.4	1.4	1.4	1.5	1.6	1.7	1.8	
Maximum armour resista	nce at 20ºC	ohm/km	9.5	8.2	7.5	6.7	4.0	3.5	2.5	2.3
Gross armour wire area		sq.mm	16	19	20	23	39	45	62	68
Maximum resistance	D.C. at 20° C	ohm/km	12.1	7.41	4.61	3.08	1.83	1.15	0.727	0.524
of Conductor	A.C. at 90° C	ohm/km	-	-	-	-	-	1.460	0.927	0.668
Inductance		mH/km	-	-	-	-	-	0.251	0.252	0.246
Reactance at 50Hz		ohm/km	-	-	-	-	-	0.079	0.079	0.077
Impedance at 90°c		ohm/km	-	-	-	-	-	1.462	0.930	0.672
Maximum symmetrical	for 0.2 Sec	kA	0.5	0.8	1.3	1.9	3.2	5.1	8.0	11.2
short - circuit current	for 1.0 Sec	kA	0.2	0.4	0.6	0.9	1.4	2.3	3.6	5.0
ratings	for 3.0 Sec	kA	0.1	0.2	0.3	0.5	0.8	1.3	2.1	2.9
Maximum earth - fault	for 0.2 Sec	kA	1.3	1.6	1.7	1.9	3.3	3.8	5.2	5.7
short - circuit current	for 1.0 Sec	kA	0.6	0.7	0.8	0.9	1.5	1.7	2.3	2.6
ratings	for 3.0 Sec	kA	0.3	0.4	0.4	0.5	0.8	1.0	1.3	1.5
Approximate overall diam	neter	mm	12.6	14.1	15.3	16.6	19.5	21.6	26.7	29.4
Approximate Cable weig	ht	kg/km	278.1	361.9	442.9	545.1	834.4	1115.5	1734.7	2184.3
Minimum bending radius		mm	76	85	92	100	117	130	160	176
Nominal Drum Length		m	1000	1000	1000	1000	1000	1000	500	500
Size of the Drum			D-1	D-1	D-1	D-2	D-2	D-3	D-4	D-4
Drum Weight		kg	60	60	60	138	138	145	150	150
Gross weight of the Cable	Drum	kg	338	422	503	683	972	1261	1017	1242



- Cu Conductor
 XLPE Insulation
- 3. Poly Propylene Fillers
- 4. PVC Bedding
- 5. Galvanized Steel Wire Armour
- 6. PVC Sheath

3 Core Armoured Cables - Cu/XLPE/SWA/PVC With Sector Shaped Conductors

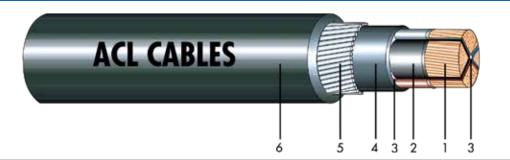
								-					
ITEM CODE Nominal Area of Conduc	tor	UNIT sq.mm	X-30 25	X-31 35	X-32 50	X-33 70	X-34 95	X-35 120	X-36 150	X-37 185	X-38 240	X-39 300	X-40 400
Nominal Thickness of ins	sulation	mm	0.9	0.9	1.0	1.1	1.1	1.2	1.4	1.6	1.7	1.8	2.0
Thickness of Extruded b	edding	mm	1.0	1.0	1.0	1.0	1.2	1.2	1.4	1.4	1.4	1.6	1.6
Galvanized Steel Armour	wire diameter	mm	1.6	1.6	1.6	1.6	2.0	2.0	2.5	2.5	2.5	2.5	2.5
Thickness of oversheath		mm	1.7	1.8	1.8	1.9	2.1	2.2	2.3	2.4	2.6	2.7	2.9
Maximum armour resista	nce at 20ºC	ohm/km	2.50	2.30	2.00	1.80	1.30	1.20	0.78	0.71	0.63	0.58	0.52
Gross armour wire area		sq.mm	62	68	78	90	128	141	201	220	250	269	304
Maximum resistance	D.C. at 20º C	ohm/km	0.727	0.524	0.387	0.268	0.193	0.153	0.124	0.0991	0.0754	0.0601	0.0470
of Conductor	A.C. at 90° C	ohm/km	0.927	0.668	0.493	0.342	0.254	0.196	0.159	0.128	0.0988	0.0798	0.064
Inductance		mH/km	0.256	0.249	0.247	0.235	0.229	0.228	0.230	0.225	0.226	0.224	0.223
Reactance at 50Hz		ohm/km	0.081	0.078	0.078	0.074	0.072	0.072	0.072	0.071	0.071	0.070	0.070
Impedance at 90°c		ohm/km	0.930	0.673	0.499	0.350	0.264	0.209	0.175	0.146	0.122	0.106	0.095
Maximum symmetrical	for 0.2 Sec	kA	8.0	11.2	16.0	22.4	30.4	38.4	48.0	59.2	76.8	96.0	128.0
short - circuit current	for 1.0 Sec	kA	3.6	5.0	7.2	10.0	13.6	17.2	21.5	26.5	34.3	42.9	57.2
ratings	for 3.0 Sec	kA	2.1	2.9	4.1	5.8	7.8	9.9	12.4	15.3	19.8	24.8	33.0
Maximum earth - fault	for 0.2 Sec	kA	5.2	5.7	6.6	7.6	10.8	11.8	16.9	18.5	21.0	22.6	25.5
short - circuit current	for 1.0 Sec	kA	2.3	2.6	2.9	3.4	4.8	5.3	7.6	8.3	9.4	10.1	11.4
ratings	for 3.0 Sec	kA	1.3	1.5	1.7	2.0	2.8	3.1	4.4	4.8	5.4	5.8	6.6
Approximate overall diam	leter	mm	23.6	25.7	28.5	32.2	37.0	40.4	45.5	49.8	55.1	60.2	66.6
Approximate Cable weigh	nt	kg/km	1481.6	1834.7	2384.2	3132.4	4324.7	5160.0	6595.1	8022.3	9975.1	12054.6	14956.5
Minimum bending radius		mm	189	206	228	258	296	323	364	398	441	482	533
Nominal Drum Length		m	500	500	500	500	500	500	500	350	250	250	250
Size of the Drum			D-2	D-4	D-4	D-6	D-6	D-11	D-11	D-12	D-12	-	-
Drum Weight		kg	138	150	150	230	230	495	495	510	510	-	-
Gross weight of the Cable	Drum	kg	879	1067	1342	1796	2392	3075	3793	3318	3004	3014	3739


- 1. Cu Conductor
- 2. XLPE Insulation
- 3. Poly Propylene Fillers
- 4. PVC Bedding
- 5. Galvanized Steel Wire Armour
- 6. PVC Sheath

4 Core Armoured Cables - Cu/XLPE/SWA/PVC With Circular Conductors

600/	1000V	BS	5467	:1997

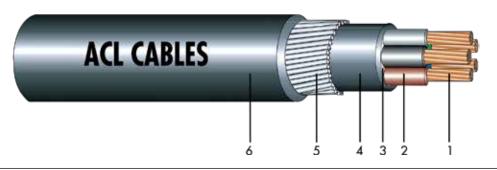
ITEM CODE Nominal Area of Conduc	tor	UNIT sq.mm	X-41 1.5	X-42 2.5	X-43 4	X-44 6	X-45 10	X-46 16	X-47 25	X-48 35
Nominal Thickness of insulation		mm	0.6	0.7	0.7	0.7	0.7	0.7	0.9	0.9
Thickness of Extruded k		mm	0.8	0.8	0.8	0.8	0.8	0.8	1.0	1.0
Galvanized Steel Armour		mm	0.9	0.9	0.9	1.25	1.25	1.25	1.6	1.6
Thickness of oversheath		mm	1.3	1.4	1.4	1.5	1.5	1.6	1.7	1.8
Maximum armour resista	ance at 20°C	ohm/km	8.8	7.7	6.8	4.3	3.7	3.1	2.3	2.0
Gross armour wire area		sq.mm	17	20	22	36	42	50	70	78
Maximum resistance	D.C. at 20° C	ohm/km	12.1	7.41	4.61	3.08	1.83	1.15	0.727	0.524
of Conductor	A.C. at 90° C	ohm/km	-	-	-	-	-	1.460	0.927	0.668
Inductance		mH/km	-	-	-	-	-	0.251	0.252	0.246
Reactance at 50Hz		ohm/km	-	-	-	-	-	0.079	0.079	0.077
Impedance at 90°C		ohm/km	-	-	-	-	-	1.462	0.930	0.672
Maximum symmetrical	for 0.2 Sec	kA	0.5	0.8	1.3	1.9	3.2	5.1	8.0	11.2
short - circuit current	for 1.0 Sec	kA	0.2	0.4	0.6	0.9	1.4	2.3	3.6	5.0
ratings	for 3.0 Sec	kA	0.1	0.2	0.3	0.5	0.8	1.3	2.1	2.9
Maximum earth - fault	for 0.2 Sec	kA	1.4	1.7	1.8	3.0	3.5	4.2	5.9	6.6
short - circuit current	for 1.0 Sec	kA	0.6	0.8	0.8	1.4	1.6	1.9	2.6	2.9
ratings	for 3.0 Sec	kA	0.4	0.4	0.5	0.8	0.9	1.1	1.5	1.7
Approximate overall dian	neter	mm	13.3	15.0	16.4	18.7	21.1	23.4	28.9	31.9
Approximate Cable weig	ht	kg/km	320.7	412.7	516.8	738.4	1008.4	1363.6	2116.5	2671.9
Minimum bending radius	3	mm	80	90	98	112	127	140	173	191
Nominal Drum Length		m	1000	1000	1000	1000	1000	1000	500	500
Size of the Drum			D-1	D-1	D-2	D-2	D-3	D-3	D-4	D-5
Drum Weight		kg	60	60	138	138	145	145	150	225
Gross weight of the Cable	e Drum	kg	381	473	655	876	1153	1509	1208	1561



- 1. Cu Conductor
- 2. XLPE Insulation
- 3. Poly Propylene Fillers
- 4. PVC Bedding
- 5. Galvanized Steel Wire Armour
- 6. PVC Sheath

4 Core Armoured Cables - Cu/XLPE/SWA/PVC With Sector Shaped Conductors

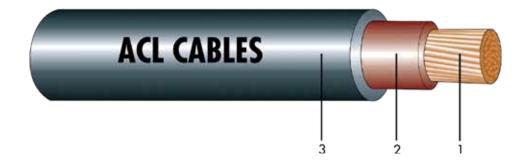
ITEM CODE Nominal Area of Conduc	tor	UNIT sq.mm	X-49 25	X-50 35	X-51 50	X-52 70	X-53 95	X-54 120	X-55 150	X-56 185	X-57 240	X-58 300	X-59 400
Nominal Thickness of ins	sulation	mm	0.9	0.9	1.0	1.1	1.1	1.2	1.4	1.6	1.7	1.8	2.0
Thickness of Extruded b	edding	mm	1.0	1.0	1.0	1.2	1.2	1.4	1.4	1.4	1.6	1.6	1.8
Galvanized Steel Armour	wire diameter	mm	1.6	1.6	1.6	2.0	2.0	2.5	2.5	2.5	2.5	2.5	3.15
Thickness of oversheath		mm	1.7	1.8	1.9	2.1	2.2	2.3	2.4	2.6	2.7	2.9	3.2
Maximum armour resista	nce at 20ºC	ohm/km	2.3	2.0	1.8	1.2	1.10	0.76	0.68	0.61	0.54	0.49	0.35
Gross armour wire area		sq.mm	70	78	90	131	147	206	230	255	289	319	452
Maximum resistance	D.C. at 20° C	ohm/km	0.727	0.524	0.387	0.268	0.193	0.153	0.124	0.0991	0.0754	0.0601	0.0470
of Conductor	A.C. at 90° C	ohm/km	0.927	0.668	0.493	0.342	0.254	0.196	0.159	0.128	0.099	0.080	0.064
Inductance		mH/km	0.256	0.249	0.247	0.235	0.229	0.228	0.230	0.225	0.226	0.224	0.223
Reactance at 50Hz		ohm/km	0.081	0.078	0.078	0.074	0.072	0.072	0.072	0.071	0.071	0.070	0.070
Impedance at 90°c		ohm/km	0.930	0.673	0.499	0.350	0.264	0.209	0.175	0.146	0.122	0.106	0.095
Maximum symmetrical	for 0.2 Sec	kA	8.0	11.2	16.0	22.4	30.4	38.4	48.0	59.2	76.8	96.0	128.0
short - circuit current	for 1.0 Sec	kA	3.6	5.0	7.2	10.0	13.6	17.2	21.5	26.5	34.3	42.9	57.2
ratings	for 3.0 Sec	kA	2.1	2.9	4.1	5.8	7.8	9.9	12.4	15.3	19.8	24.8	33.0
Maximum earth - fault	for 0.2 Sec	kA	5.9	6.6	7.6	11.0	12.4	17.3	19.3	21.4	24.3	26.8	38.0
short - circuit current	for 1.0 Sec	kA	2.6	2.9	3.4	4.9	5.5	7.7	8.6	9.6	10.9	12.0	17.0
ratings	for 3.0 Sec	kA	1.5	1.7	2.0	2.8	3.2	4.5	5.0	5.5	6.3	6.9	9.8
Approximate overall diam	neter	mm	26.1	28.6	32.0	37.7	41.7	47.1	51.4	56.6	63.0	68.8	78.1
Approximate Cable weigl	ht	kg/km	1877.3	2350.3	3002.9	4269.3	5514.7	6993.2	8373.1	10058.5	12703.1	15404.2	19998.1
Minimum bending radius		mm	209	229	256	302	334	377	411	453	504	550	625
Nominal Drum Length		m	500	500	500	500	500	500	350	350	-	-	-
Size of the Drum			D-4	D-4	D-6	D-6	D-11	D-11	D-12	D-13	-	-	-
Drum Weight		kg	150	150	230	230	495	495	510	565			
Gross weight of the Cable	Drum	kg	1089	1325	1731	2365	3252	3992	3441	4085	-	-	-


- 1. Cu Conductor
- 2. XLPE Insulation
- 3. Poly Propylene Fillers
- 4. PVC Bedding
- 5. Galvanized Steel Wire Armour
- 6. PVC Sheath

4 Core Armoured Cables - Cu/XLPE/SWA/PVC Reduced Neutral Conductor

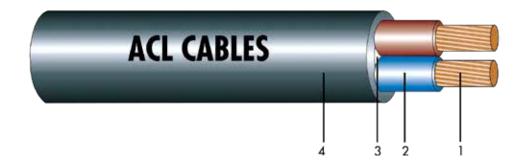
600/1000V IEC 60502 -1:2004

ITEM CODE Nominal Area of Conductor		UNIT sq.mm	X-60 _{⊫C} 25/16	X-61 _{⊫C} 35/16	X-62 _{IEC} 50/25	X-63 _{IEC} 70/35	X-64 _{IEC} 95/50	X-65 _{IEC} 120/70	X-66 _{IEC} 150/70	X-67 _{IEC} 185/95	X-68 _{IEC} 240/120	X-69 _{IEC} 300/150	X-71 _{IEC} 400/185
Nominal Thickness of ins	sulation	mm	0.9/0.7	0.9/0.7	1.0/0.9	1.1/0.9	1.1/1.0	1.2/1.1	1.4/1.1	1.6/1.1	1.7/1.2	1.8/1.4	2.0/1.6
Thickness of Extruded be	edding	mm	1.0	1.0	1.0	1.2	1.2	1.2	1.4	1.4	1.6	1.6	1.6
Galvanized Steel Armour v	vire diameter	mm	1.60	1.60	1.60	2.00	2.00	2.00	2.00	2.50	2.50	2.50	3.15
Thickness of oversheath		mm	1.8	1.8	2.0	2.1	2.3	2.4	2.6	2.7	2.9	3.1	3.40
Maximum armour resistar	nce at 200C	ohm/km	2.3	2.1	1.9	1.3	1.1	0.96	0.71	0.63	0.56	0.52	0.46
Gross armour wire area		sq.mm	70	76	86	128	144	163	220	250	279	304	343
Maximum resistance	D.C. at 20° C	ohm/km	0.727	0.524	0.387	0.268	0.193	0.153	0.124	0.0991	0.0754	0.0601	0.0470
of Phase Conductor	A.C. at 90° C	ohm/km	0.927	0.668	0.493	0.342	0.254	0.196	0.159	0.128	0.099	0.080	0.064
Maximum resistance of Neutral Conductor	D.C. at 20º C	ohm/km	1.15	1.150	0.727	0.524	0.387	0.268	0.268	0.193	0.153	0.124	0.0991
Inductance		mH/km	0.252	0.246	0.247	0.235	0.229	0.228	0.230	0.225	0.226	0.224	0.223
Reactance at 50Hz		ohm/km	0.079	0.077	0.078	0.074	0.072	0.072	0.072	0.071	0.071	0.070	0.070
Impedance at 900c		ohm/km	0.930	0.672	0.499	0.350	0.264	0.209	0.175	0.146	0.122	0.107	0.095
Maximum symmetrical	for 0.2 Sec	kA	8.0	11.2	16.0	22.4	30.4	38.4	48.0	59.2	76.8	96.0	128.0
short - circuit	for 1.0 Sec	kA	3.6	5.0	7.2	10.0	13.6	17.2	21.5	26.5	34.3	42.9	57.2
current ratings	for 3.0 Sec	kA	2.1	2.9	4.1	5.8	7.8	9.9	12.4	15.3	19.8	24.8	33.0
Maximum earth - fault	for 0.2 Sec	kA	5.9	6.4	7.2	10.8	12.1	13.7	18.5	21.0	23.4	25.5	28.8
short - circuit	for 1.0 Sec	kA	2.6	2.9	3.2	4.8	5.4	6.1	8.3	9.4	10.5	11.4	12.9
current ratings	for 3.0 Sec	kA	1.5	1.6	1.9	2.8	3.1	3.5	4.8	5.4	6.1	6.6	7.4
Approximate overall diam	eter	mm	28.3	30.3	29.8	35.2	38.6	43.0	45.8	51.2	57.1	61.5	69.6
Approximate Cable weight		kg/km	1973.2	2351.6	2663.8	3813.6	4891.1	6014.4	7000.8	8954.3	11292.1	13579.6	17557.8
Minimum bending radius		mm	226	242	238	282	309	344	366	410	457	492	557
Nominal Drum Length		m	500	500	500	500	500	500	350	350			
Size of the Drum			D - 3	D - 5	D - 7	D - 9	D - 8	D - 11	D - 8	D - 11			
Drum Weight		kg	145	225	245	265	255	495	255	495			
Gross weight of the Cable	Drum	kg	1132	1401	1577	2172	2701	3502	2705	3629			

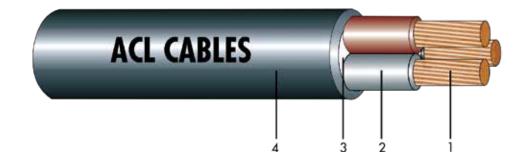


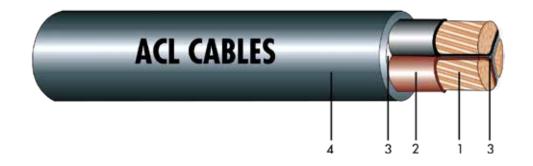
- 1. Cu Conductor
- 2. XLPE Insulation
- 3. Poly Propylene Fillers
- 4. PVC Bedding
- 5. Galvanized Steel Wire Armour
- 6. PVC Sheath

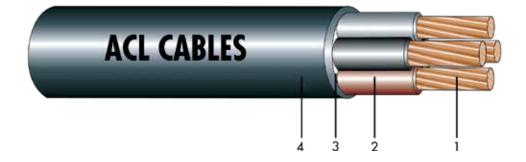
5 Core Armoured Cables - Cu/XLPE/SWA/PVC with Circular Conductor


ITEM CODE Nominal Area of Conduc	tor	UNIT sq.mm	X-72 1.5	X-73 2.5	X-74 4	X-75 6	X-76 10	X-77 16	X-78 25	X-79 35	X-80 50	X-81 70
Nominal Thickness of ins		mm	0.6	0.7	0.7	0.7	0.7	0.7	0.9	0.9	1.0	1.1
Thickness of Extruded b		mm	0.8	0.8	0.8	0.8	0.8	1.0	1.0	1.0	1.2	1.2
Galvanized Steel Armour	-	mm	0.9	0.9	0.9	1.25	1.25	1.6	1.6	1.6	2.0	2.0
Thickness of oversheath		mm	1.4	1.4	1.5	1.5	1.6	1.7	1.8	1.9	2.0	2.2
Maximum armour resista	nce at 20ºC	ohm/km	8.2	6.8	6.2	3.9	3.4	2.2	1.8	1.6	1.1	0.94
Gross armour wire area		sq.mm	19	22	25	40	46	72	88	100	144	166
Maximum resistance	D.C. at 20° C	ohm/km	12.1	7.41	4.61	3.08	1.83	1.15	0.727	0.524	0.387	0.268
of Conductor	A.C. at 90° C	ohm/km	-	-	-	-	-	1.460	0.927	0.668	0.494	0.342
Inductance		mH/km	-	-	-	-	-	0.251	0.252	0.246	0.235	0.231
Reactance at 50Hz		ohm/km	-	-	-	-	-	0.079	0.079	0.077	0.074	0.073
Impedance at 90°c		ohm/km	-	-	-	-	-	1.462	0.930	0.672	0.499	0.350
Maximum symmetrical	for 0.2 Sec	kA	0.5	0.8	1.3	1.9	3.2	5.1	8.0	11.2	16.0	22.4
short - circuit	for 1.0 Sec	kA	0.2	0.4	0.6	0.9	1.4	2.3	3.6	5.0	7.2	10.0
current ratings	for 3.0 Sec	kA	0.1	0.2	0.3	0.5	0.8	1.3	2.1	2.9	4.1	5.8
Maximum earth - fault	for 0.2 Sec	kA	1.6	1.8	2.1	3.4	3.9	6.1	7.4	8.4	12.1	14.0
short - circuit	for 1.0 Sec	kA	0.7	0.8	0.9	1.5	1.7	2.7	3.3	3.8	5.4	6.2
current ratings	for 3.0 Sec	kA	0.4	0.5	0.5	0.9	1.0	1.6	1.9	2.2	3.1	3.6
Approximate overall diam	neter	mm	14.3	16.1	17.8	20.0	22.9	26.6	31.5	34.8	40.4	46.3
Approximate Cable weigh	nt	kg/km	356.7	463.4	595.7	835.8	1175.5	1756.2	2514.3	3187.3	4327.5	5800.0
Minimum bending radius		mm	86	97	107	120	137	160	189	209	242	278
Nominal Drum Length		m	1000	1000	1000	1000	1000	1000	500	500	500	500
Size of the Drum			D - 1	D - 1	D - 2	D - 2	D - 3	D - 3	D -3	D - 3	D- 5	D- 8
Drum Weight		kg	60	60	138	138	145	145	145	145	225	255
Gross weight of the Cable Drum		kg	417	523	734	974	1321	1901	1402	1739	2389	3155

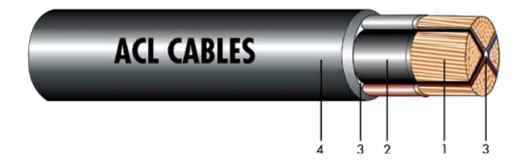
Cu Conductor
 XLPE Insulation
 PVC Sheath


1 Core Unarmoured Cables - Cu/XLPE/PVC 600/1000V BS 7889:1997															
ITEM CODE Nominal Area of Conductor		UNIT sq.mm	X-82 50	X-83 70	X-84 95	X-85 120	X-86 150	X-87 185	X-88 240	X-89 300	X-90 400	X-91 500	X-92 630	X-93 800	X-94 1000
Nominal Thickness of insu	lation	mm	1.0	1.1	1.1	1.2	1.4	1.6	1.7	1.8	2.0	2.2	2.4	2.6	2.8
Thickness of oversheath		mm	1.4	1.4	1.5	1.5	1.6	1.6	1.7	1.8	1.9	2.0	2.2	2.3	2.4
Maximum resistance of Conductor	D.C. at 20º C A.C. at 90º C	ohm/km ohm/km	0.387 0.493	0.268 0.341	0.193 0.246	0.153 0.196	0.124 0.159	0.0991 0.128	0.0754 0.0981	0.0601 0.0792	0.0470 0.063	0.0366 0.051	0.0283 0.042	0.0221 0.036	0.0176 0.032
Inductance		mH/km	0.280	0.271	0.262	0.256	0.256	0.253	0.248	0.245	0.243	0.241	0.241	0.237	0.235
Reactance at 50Hz		ohm/km	0.088	0.085	0.082	0.080	0.080	0.080	0.078	0.077	0.076	0.076	0.076	0.074	0.074
Impedance at 90°c		ohm/km	0.501	0.351	0.259	0.212	0.178	0.151	0.125	0.110	0.099	0.091	0.087	0.083	0.080
Maximum symmetrical	for 0.2 Sec	kA	16.0	22.4	30.4	38.4	48.0	59.2	76.8	96.0	128.0	160.0	201.6	256.0	319.9
short - circuit	for 1.0 Sec	kA	7.2	10.0	13.6	17.2	21.5	26.5	34.3	42.9	57.2	71.5	90.1	114.5	143.1
current ratings	for 3.0 Sec	kA	4.1	5.8	7.8	9.9	12.4	15.3	19.8	24.8	33.0	41.3	52.0	66.1	82.6
Approximate overall diame	ter	mm	14.2	16.2	18.3	20.2	22.4	24.7	27.7	30.6	34.2	38.0	42.9	47.8	53.0
Approximate Cable weight		kg/km	545.9	762.3	1003.3	1281.8	1573.2	1954.1	2536.8	3157.7	4013.8	5031.6	6551.6	8191.0	10262.4
Minimum bending radius		mm	85	97	110	121	134	148	166	184	205	228	257	287	318
Nominal Drum Length		m	1000	1000	1000	1000	1000	1000	1000	750	500	500	250	250	250
Size of the Drum			D - 1	D - 2	D - 2	D - 3	D - 3	D - 5	D - 5	D - 5	D - 5	D - 6	D - 6	D - 7	D - 7
Drum Weight		kg	60	138	138	145	145	225	225	225	225	230	230	245	245
Gross weight of the Cable D	irum	kg	606	900	1141	1427	1718	2179	2762	2593	2232	2746	1868	2293	2811


2 Core Unarm	oured Cable	s - Cu/XLPE/PVC W	/ith Circular Conduct	ors	600/1000V BS 5467:1989
ITEM CODE Nominal Area of Conduct	or	UNIT sq.mm	X-95 16	X-96 25	X-97 35
Nominal Thickness of inst	ulation	mm	0.7	0.9	0.9
Thickness of oversheath		mm	1.8	1.8	1.8
Maximum resistance	D.C. at 20º C	ohm/km	1.15	0.727	0.524
of Conductor	A.C. at 90° C	ohm/km	1.46	0.927	0.668
Inductance		mH/km	0.251	0.252	0.246
Reactance at 50Hz		ohm/km	0.079	0.079	0.077
Impedance at 90°c		ohm/km	1.462	0.930	0.672
Maximum symmetrical	for 0.2 Sec	kA	5.1	8.0	11.2
short - circuit	for 1.0 Sec	kA	2.3	3.6	5.0
current ratings	for 3.0 Sec	kA	1.3	2.1	2.9
Approximate overall diame	eter	mm	16.6	20.0	22.3
Approximate Cable weigh	t	kg/km	450.4	670.8	880.9
Minimum bending radius		mm	100	120	134
Nominal Drum Length		m	1000	1000	1000
Size of the Drum			D - 2	D -3	D - 3
Drum Weight		kg	138	145	145
Gross weight of the Cable I	Drum	kg	588	816	1026

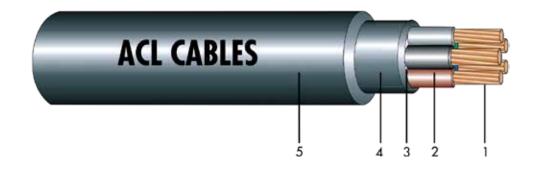


3 Core Unar	moured Cables	- Cu/XLPE/PVC W	ith Circular Conduct	ors	600/1000V BS 5467:1989
ITEM CODE Nominal Area of Condu	uctor	UNIT sq.mm	X-98 16	X-99 25	X-100 35
Nominal Thickness of i	nsulation	mm	0.7	0.9	0.9
Thickness of oversheath	ו	mm	1.8	1.8	1.8
Maximum resistance	D.C. at 20° C	ohm/km	1.15	0.727	0.524
of Conductor	A.C. at 90° C	ohm/km	1.460	0.927	0.668
Inductance		mH/km	0.251	0.252	0.246
Reactance at 50Hz		ohm/km	0.079	0.079	0.077
Impedance at 90°c		ohm/km	1.462	0.930	0.672
Maximum symmetrical	for 0.2 Sec	kA	5.1	8.0	11.2
short - circuit	for 1.0 Sec	kA	2.3	3.6	5.0
current ratings	for 3.0 Sec	kA	1.3	2.1	2.9
Approximate overall dia	imeter	mm	17.6	21.3	23.8
Approximate Cable wei	ght	kg/km	621.8	940.1	1247.1
Minimum bending radiu	IS	mm	106	128	143
Nominal Drum Length		m	1000	500	500
Size of the Drum			D - 2	D -2	D - 2
Drum Weight		kg	138	138	138
Gross weight of the Cab	le Drum	kg	760	608	762

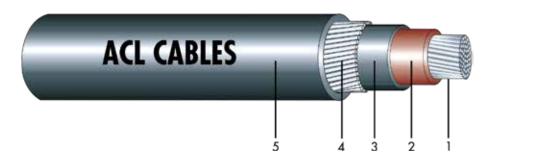


3 Core Unarm	oured Cab	oles - Cu	ı/XLPE	E/PVC	With So	ector S	Shaped	Cond	uctors			600/1000V BS	5467:1989
ITEM CODE Nominal Area of Conduct	or	UNIT sq.mm	X-101 25	X-102 35	X-103 50	X-104 70	X-105 95	X-106 120	X-107 150	X-108 185	X-109 240	X-110 300	X-111 400
Nominal Thickness of insi	ulation	mm	0.9	0.9	1.0	1.1	1.1	1.2	1.4	1.6	1.7	1.8	2.0
Thickness of oversheath		mm	1.8	1.8	1.8	1.9	2.0	2.1	2.2	2.4	2.6	2.7	3.0
Maximum resistance	D.C. at 20° C	ohm/km	0.727	0.524	0.387	0.268	0.193	0.153	0.124	0.0991	0.0754	0.0601	0.0470
of Conductor	A.C. at 90° C	ohm/km	0.927	0.668	0.493	0.342	0.254	0.196	0.159	0.128	0.099	0.080	0.064
Inductance		mH/km	0.256	0.249	0.247	0.235	0.229	0.228	0.230	0.225	0.226	0.224	0.223
Reactance at 50Hz		ohm/km	0.081	0.078	0.078	0.074	0.072	0.072	0.072	0.071	0.071	0.070	0.070
Impedance at 90°c		ohm/km	0.930	0.673	0.499	0.350	0.264	0.209	0.175	0.146	0.122	0.106	0.095
Maximum symmetrical	for 0.2 Sec	kA	8.0	11.2	16.0	22.4	30.4	38.4	48.0	59.2	76.8	96.0	128.0
short - circuit	for 1.0 Sec	kA	3.6	5.0	7.2	10.0	13.6	17.2	21.5	26.5	34.3	42.9	57.2
current ratings	for 3.0 Sec	kA	2.1	2.9	4.1	5.8	7.8	9.9	12.4	15.3	19.8	24.8	33.0
Approximate overall diame	eter	mm	18.6	20.3	24.8	28.3	31.6	34.9	39.0	44.8	49.9	53.8	61.2
Approximate Cable weigh	t	kg/km	901.2	1188.0	1590.5	2242.5	3048.9	3763.7	4633.8	5808.6	7530.4	9334.7	11897.5
Minimum bending radius		mm	149	163	199	227	253	279	312	358	399	430	490
Nominal Drum Length		m	1000	1000	750	750	750	500	500	500	350	350	250
Size of the Drum			D - 2	D -4	D - 4	D-5	D-5	D-7	D-8	D-12	D-12	D-12	D-12
Drum Weight		kg	138	150	150	225	225	245	255	510	510	510	510
Gross weight of the Cable [Drum	kg	1039	1338	1343	1907	2512	2127	2572	3414	3146	3777	3484

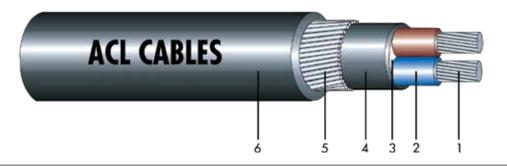
4 Core Unar	moured Cables	- Cu/XLPE/PVC W	ith Circular Conduct	ors	600/1000V BS 5467:1989
ITEM CODE Nominal Area of Cond	uctor	UNIT sq.mm	X-112 16	X-113 25	X-114 35
Nominal Thickness of	insulation	mm	0.7	0.9	0.9
Thickness of oversheat	h	mm	1.8	1.8	1.8
Maximum resistance	D.C. at 20° C	ohm/km	1.15	0.727	0.524
of Conductor	A.C. at 90° C	ohm/km	1.460	0.927	0.668
Inductance		mH/km	0.251	0.252	0.246
Reactance at 50Hz		ohm/km	0.079	0.079	0.077
Impedance at 90°c		ohm/km	1.462	0.930	0.672
Maximum symmetrical	for 0.2 Sec	kA	5.1	8.0	11.2
short - circuit	for 1.0 Sec	kA	2.3	3.6	5.0
current ratings	for 3.0 Sec	kA	1.3	2.1	2.9
Approximate overall di	ameter	mm	19.3	23.4	26.2
Approximate Cable we	eight	kg/km	862.2	1334.0	1782.3
Minimum bending radi	us	mm	116	141	157
Nominal Drum Length		m	1000	750	750
Size of the Drum			D - 3	D -3	D - 3
Drum Weight		kg	145	145	145
Gross weight of the Cat	ble Drum	kg	1007	1146	1482



4 Core Unarmo	oured Cab	oles - Cu	J/XLPE	PVC	With So	ector S	Shaped	Cond	uctors			600/1000V BS	5467:1989
ITEM CODE Nominal Area of Conductor		UNIT sq.mm	X-115 25	X-116 35	X-117 50	X-118 70	X-119 95	X-120 120	X-121 150	X-122 185	X-123 240	X-124 300	X-125 400
Nominal Thickness of insula	ation	mm	0.9	0.9	1.0	1.1	1.1	1.2	1.4	1.6	1.7	1.8	2.0
Thickness of oversheath		mm	1.8	1.8	1.8	2.0	2.1	2.2	2.4	2.6	2.8	3.0	3.2
Maximum resistance	D.C. at 20° C	ohm/km	0.727	0.524	0.387	0.268	0.193	0.153	0.124	0.0991	0.0754	0.0601	0.0470
of Conductor	A.C. at 90° C	ohm/km	0.927	0.668	0.493	0.342	0.254	0.196	0.159	0.128	0.099	0.080	0.064
Inductance		mH/km	0.256	0.249	0.247	0.235	0.229	0.228	0.230	0.225	0.226	0.224	0.223
Reactance at 50Hz		ohm/km	0.081	0.078	0.078	0.074	0.072	0.072	0.072	0.071	0.071	0.070	0.070
Impedance at 90°c		ohm/km	0.930	0.673	0.499	0.350	0.264	0.209	0.175	0.146	0.122	0.106	0.095
Maximum symmetrical	for 0.2 Sec	kA	8.0	11.2	16.0	22.4	30.4	38.4	48.0	59.2	76.8	96.0	128.0
short - circuit	for 1.0 Sec	kA	3.6	5.0	7.2	10.0	13.6	17.2	21.5	26.5	34.3	42.9	57.2
current ratings	for 3.0 Sec	kA	2.1	2.9	4.1	5.8	7.8	9.9	12.4	15.3	19.8	24.8	33.0
Approximate overall diamete	er	mm	22.4	24.8	28.3	32.7	36.5	40.4	45.3	50.2	56.2	61.9	70.4
Approximate Cable weight		kg/km	1186.9	1573.0	2108.4	2987.9	4034.3	4983.5	6156.6	7710.1	9969.4	12408.4	15790.1
Minimum bending radius		mm	179	198	227	261	292	323	362	402	449	495	563
Nominal Drum Length		m	500	500	500	500	500	500	350	350	250	-	-
Size of the Drum			D - 2	D -2	D - 4	D-6	D-6	D-9	D-9	D-9	D-12	-	-
Drum Weight		kg	138	138	150	230	230	265	265	265	510	-	-
Gross weight of the Cable Dr	um	kg	731	925	1204	1724	2247	2757	2420	2964	3002	-	-


4 Core Unarmoured Cables - Cu/XLPE/PVC Reduced Neutral Conductor 600/1000V IEC 60502 -1:2004													
ITEM CODE Nominal Area of Cond	luctor	UNIT sq.mm	X-126 _{IEC} 25/16	X-127 _{IEC} 35/16	X-128 _{IEC} 50/25	X-129 _{IEC} 70/35	X-130 _{IEC} 95/50	X-131 _{IEC} 120/70	X-132 _{IEC} 150/70	X-133 _{IEC} 185/95	X-134 _{IEC} 240/120	X-135 _{IEC} 300/150	X-137 _{IEC} 400/185
Nominal Thickness of	insulation	mm	0.9/0.7	0.9/0.7	1.0/0.9	1.1/0.9	1.1/1.0	1.2/1.1	1.4/1.1	1.6/1.1	1.7/1.2	1.8/1.4	2.0/1.6
Thickness of Extruded	l bedding	mm	-	-	1.0	1.2	1.2	1.2	1.4	1.4	1.6	1.6	1.6
Thickness of overshea	ath	mm	1.8	1.8	1.9	2.0	2.1	2.3	2.4	2.5	2.7	3.0	3.2
Maximum resistance	D.C. at 20º C	ohm/km	0.727	0.524	0.387	0.268	0.193	0.153	0.124	0.0991	0.0754	0.0601	0.0470
of Phase Conductor	A.C. at 90º C	ohm/km	0.927	0.668	0.493	0.342	0.254	0.196	0.159	0.128	0.099	0.080	0.064
Maximum resistance													
of Neutral Conductor	D.C. at 20º C	ohm/km	1.15	1.15	0.727	0.524	0.387	0.268	0.268	0.193	0.153	0.124	0.0991
Inductance		mH/km	0.252	0.246	0.247	0.235	0.229	0.228	0.230	0.225	0.226	0.224	0.223
Reactance at 50Hz		ohm/km	0.079	0.077	0.078	0.074	0.072	0.072	0.072	0.071	0.071	0.070	0.070
Impedance at 90° C		ohm/km	0.930	0.672	0.499	0.350	0.264	0.209	0.175	0.146	0.122	0.107	0.095
Maximum symmetrica	l for 0.2 Sec	kA	8.0	11.2	16.0	22.4	30.4	38.4	48.0	59.2	76.8	96.0	128.0
short - circuit	for 1.0 Sec	kA	3.6	5.0	7.2	10.0	13.6	17.2	21.5	26.5	34.3	42.9	57.2
current ratings	for 3.0 Sec	kA	2.1	2.9	4.1	5.8	7.8	9.9	12.4	15.3	19.8	24.8	33.0
Approximate overall d	iameter	mm	23.1	25.1	26.4	31.0	34.2	38.8	41.4	45.8	51.7	56.3	62.9
Approximate Cable we	eight	kg/km	1178.1	1482.8	1951.4	2762.5	3694.0	4679.8	5646.3	6978.3	9025.7	11173.2	14120.8
Minimum bending rad	ius	mm	139	151	211	248	274	310	331	366	414	450	503
Nominal Drum Length		m	500	500	500	500	500	500	350	350	350		
Size of the Drum			D - 2	D - 2	D - 4	D - 5	D - 5	D - 5	D - 6	D - 8	D - 11		
Drum Weight		kg	138	138	150	225	225	225	230	255	495		
Gross weight of the Cal	ble Drum	kg	727	879	1126	1606	2072	2565	2206	2697	3654		

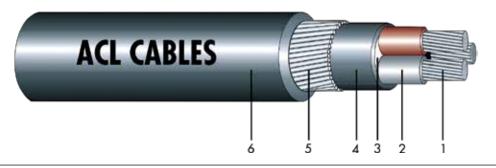
5 Core Unarm	oured Cables	- Cu/XLPE	/PVC	With C	ircular	Condu	uctors					600/1000V
ITEM CODE Nominal Area of Conduct	or	UNIT sq.mm	X-182 1.5	X-183 2.5	X-184 4.	X-185 6	X-186 10	X-187 16	X-188 25	X-189 35	X-190 50	X-191 70
Nominal Thickness of inst	ulation	mm	0.6	0.7	0.7	0.7	0.7	0.7	0.9	0.9	1.0	1.1
Thickness of extruded Be	dding	mm	0.8	0.8	0.8	0.8	0.8	1.0	1.0	1.0	1.2	1.2
Thickness of oversheath		mm	1.4	1.4	1.5	1.5	1.6	1.7	1.8	1.9	2.0	2.2
Maximum resistance	D.C. at 20° C	ohm/km	12.1	7.41	4.61	3.08	1.83	1.15	0.727	0.524	0.387	0.268
of Conductor	A.C. at 90° C	ohm/km	-	-	-	-	-	1.470	0.927	0.668	0.494	0.342
Inductance		mH/km	-	-	-	-	-	0.251	0.252	0.246	0.235	0.231
Reactance at 50Hz		ohm/km	-	-	-	-	-	0.079	0.079	0.077	0.074	0.073
Impedance at 90°c		ohm/km	-	-	-	-	-	1.462	0.930	0.672	0.499	0.350
Maximum symmetrical	for 0.2 Sec	kA	0.5	0.8	1.3	1.9	3.2	5.1	8.0	11.2	16.0	22.4
short - circuit	for 1.0 Sec	kA	0.2	0.4	0.6	0.9	1.4	2.3	3.6	5.0	7.2	10.0
current ratings	for 3.0 Sec	kA	0.1	0.2	0.3	0.5	0.8	1.3	2.1	2.9	4.1	5.8
Approximate overall diame	eter	mm	11.9	13.6	15.3	16.8	19.5	23.0	27.8	31.1	35.8	41.6
Approximate Cable weigh	t	kg/km	214.7	295.1	405.1	537.9	823.2	1216.5	1846.4	2433.3	3218.9	4518.8
Minimum bending radius		mm	72	82	92	101	117	138	167	186	215	250
Nominal Drum Length		m	1000	1000	1000	1000	1000	1000	500	500	500	500
Size of the Drum			D - 1	D -1	D - 2	D-2	D-3	D-3	D-3	D-3	D-5	D-8
Drum Weight		kg	60	60	138	138	145	145	145	145	225	255
Gross weight of the Cable I	Drum	kg	275	355	543	676	968	1362	1068	1362	1834	2514


Al Conductor
 XLPE Insulation
 PVC Bedding
 Al Wire Armour
 PVC Sheath

600/1000V BS 5467 : 1997

1 Core Armoured Cables - AI/XLPE/AWA/PVC

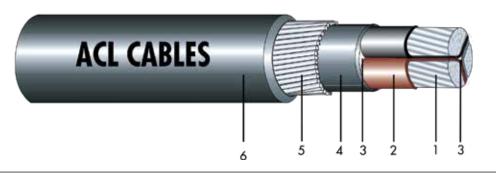
L-2 L-12 ITEM CODE UNIT L-1 L-3 L-4 L-5 L-6 L-7 L-8 L-9 L-10 L-11 L-13 Nominal Area of Conductor 50 70 95 120 150 185 240 300 400 500 630 800 1000 sq.mm Nominal Thickness of insulation 1.2 1.8 2.0 2.2 2.4 2.6 2.8 mm 1.0 1.1 1.1 1.4 1.6 1.7 Thickness of Extruded bedding 0.8 0.8 0.8 0.8 1.0 1.0 1.0 1.0 1.2 1.2 1.2 1.4 1.4 mm Aluminium Armour wire diameter 0.9 1.25 1.25 1.25 1.6 1.6 1.6 1.6 2.0 2.0 2.0 2.5 2.5 mm 2.2 Thickness of oversheath 1.5 1.5 1.6 1.6 1.7 1.8 1.8 1.9 2.0 2.1 2.3 2.5 mm 1.3 0.75 0.42 0.31 0.22 0.20 0.18 0.12 Maximum armour resistance at 20°C ohm/km 0.67 0.61 0.38 0.34 0.13 Gross armour wire area (min) sa.mm 25 39 45 50 72 80 91 99 141 157 176 246 275 0.641 0.443 0.32 0.253 0.206 0.164 0.100 0.0778 0.0605 0.0469 0.0367 0.0291 Maximum resistance D.C. at 20° C ohm/km 0.125 of Conductor A.C. at 90° C 0.822 0.028 ohm/km 0.568 0.411 0.325 0.265 0.211 0.162 0.130 0.103 0.082 0.062 0.043 Inductance mH/km 0.327 0.306 0.284 0.278 0.279 0.274 0.269 0.263 0.319 0.295 0.300 0.295 0.268 Reactance at 50Hz ohm/km 0.103 0.100 0.096 0.093 0.094 0.093 0.089 0.087 0.088 0.086 0.085 0.084 0.083 Impedance at 90°c ohm/km 0.828 0.577 0.422 0.338 0.281 0.230 0.185 0.094 0.087 0.157 0.135 0.119 0.105 Maximum symmetrical for 0.2 Sec kΑ 10.6 20.1 25.4 31.7 39.1 50.7 63.4 84.5 105.6 133.1 169.0 211.3 14.8 for 1.0 Sec kΑ 4.7 6.6 9.0 14.2 22.7 28.3 47.2 59.5 94.5 short - circuit 11.3 17.5 37.8 75.6 current ratings for 3.0 Sec kΑ 2.7 3.8 5.2 6.5 8.2 10.1 13.1 16.4 21.8 27.3 34.4 43.6 54.6 Maximum earth - fault for 0.2 Sec kΑ 3.8 6.0 7.0 7.7 12.3 13.9 15.1 21.7 24.1 27.0 37.7 42.2 11.1 short - circuit for 1.0 Sec kΑ 1.7 2.7 3.1 3.5 5.0 5.5 6.2 6.8 9.7 10.8 12.1 16.8 18.9 1.0 current ratings for 3.0 Sec kΑ 1.6 1.8 2.0 2.9 3.2 3.6 3.9 5.6 6.2 7.0 9.7 10.9 Approximate overall diameter 17.3 20.0 22.1 23.9 27.2 29.6 32.5 35.3 40.1 43.8 48.4 54.9 60.0 mm Approximate Cable weight kg/km 389.0 525.5 656.1 769.0 986.5 1178.9 1426.0 1695.4 2194.8 2640.0 3217.4 4146.6 5004.2 Minimum bending radius 212 329 360 104 120 133 143 163 178 195 240 263 290 mm Nominal Drum Length 1000 1000 1000 1000 1000 500 500 500 250 250 750 750 250 m Size of the Drum D - 2 D - 5 D - 5 D - 5 D- 5 D- 8 D - 7 D - 3 D - 3 D - 5 D -5 D - 9 D - 12 Drum Weight kg 138 145 145 225 225 225 225 225 225 255 245 265 510 Gross weight of the Cable Drum 527 1322.0 kg 671 801 994 1212 1109 1295 1073 1575 1049 1302 1761



- 1. Al Conductor
- 2. XLPE Insulation
- 3. Poly Propylene Fillers
- 4. PVC Bedding
- 5. Galvanized Steel Wire Armour
- 6. PVC Sheath

2 Core Armoured Cables - AI/XLPE/SWA/PVC With Circular Conductors

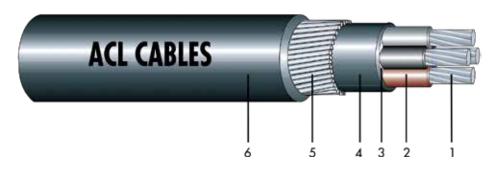
ITEM CODE Nominal Area of Conduc	tor	UNIT sq.mm	L-14 1.5	L-15 2.5	L-16 4	L-17 6	L-18 10	L-19 16	L-20 25	L-21 35
Nominal Thickness of in	sulation	mm	0.6	0.7	0.7	0.7	0.7	0.7	0.9	0.9
Thickness of Extruded b	bedding	mm	0.8	0.8	0.8	0.8	0.8	0.8	0.8	1.0
Steel Armour wire diamet	er	mm	0.9	0.9	0.9	0.9	0.9	1.25	1.25	1.6
Thickness of oversheath		mm	1.3	1.4	1.4	1.4	1.5	1.5	1.6	1.7
Maximum armour resista	ince at 20°C	ohm/km	10.2	8.8	7.9	7.0	6.0	3.7	3.7	2.6
Gross armour wire area	(min)	sq.mm	14	17	18	21	25	41	49	72
Maximum resistance	D.C. at 20° C	ohm/km	18.1	12.1	7.41	4.61	3.08	1.91	1.20	0.868
of Conductor	A.C. at 90° C	ohm/km	-	-	-	-	-	2.420	1.540	1.110
Inductance		mH/km	0.315	0.309	0.290	0.277	0.262	0.251	0.252	0.246
Reactance at 50Hz		ohm/km	0.099	0.097	0.091	0.087	0.082	0.079	0.079	0.077
Impedance at 90°c		ohm/km	0.099	0.097	0.091	0.087	0.082	2.421	1.542	1.113
Maximum symmetrical	for 0.2 Sec	kA	0.3	0.5	0.8	1.3	2.1	3.4	5.3	7.4
short - circuit	for 1.0 Sec	kA	0.1	0.2	0.4	0.6	0.9	1.5	2.4	3.3
current ratings	for 3.0 Sec	kA	0.1	0.1	0.2	0.3	0.5	0.9	1.4	1.9
Maximum earth - fault	for 0.2 Sec	kA	1.2	1.4	1.6	1.8	2.1	3.4	4.1	6.1
short - circuit	for 1.0 Sec	kA	0.5	0.6	0.7	0.8	0.9	1.5	1.8	2.7
current ratings	for 3.0 Sec	kA	0.3	0.4	0.4	0.5	0.5	0.9	1.1	1.6
Approximate overall dian	neter	mm	11.6	13.0	14.1	15.2	17.3	20.1	23.7	27.3
Approximate Cable weig		kg/km	233.6	290.3	337.5	395.3	503.5	725.6	973.9	1338.0
Minimum bending radius		mm	69	78	85	91	104	121	142	164
Nominal Drum Length		m	1000	1000	1000	1000	1000	1000	750	500
Size of the Drum			D - 1	D - 1	D - 1	D - 2	D - 2	D - 4	D -4	D - 4
Drum Weight		kg	60	60	60	138	138	150	150	150
Gross weight of the Cable	Drum	kg	294	350	398	533	642	876	880	819



- 1. Al Conductor
- 2. XLPE Insulation
- 3. Poly Propylene Fillers
- 4. PVC Bedding
- 5. Galvanized Steel Wire Armour
- 6. PVC Sheath

3 Core Armoured Cables - AI/XLPE/SWA/PVC With Circular Conductors

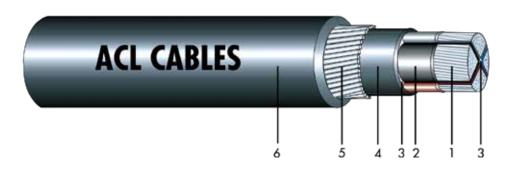
ITEM CODE Nominal Area of Conduc	ctor	UNIT sq.mm	L-22 1.5	L-23 2.5	L-24 4.0	L-25 6.0	L-26 10.0	L-27 16.0	L-28 25.0	L-29 35.0
Nominal Thickness of in	sulation	mm	0.6	0.7	0.7	0.7	0.7	0.7	0.9	0.9
Thickness of Extruded k	bedding	mm	0.8	0.8	0.8	0.8	0.8	0.8	1.0	1.0
Steel Armour wire diame	eter	mm	0.9	0.9	0.9	0.9	1.25	1.25	1.6	1.6
Thickness of oversheath		mm	1.3	1.4	1.4	1.4	1.5	1.6	1.7	1.8
Maximum armour resista	ance at 20°C	ohm/km	9.5	8.2	7.5	6.7	4.0	3.5	2.5	2.3
Gross armour wire area	(min)	sq.mm	15	18	20	22	37	43	68	78
Maximum resistance	D.C. at 20° C	ohm/km	18.1	12.1	7.41	4.61	3.08	1.91	1.20	0.868
of Conductor	A.C. at 90° C	ohm/km	-	-	-	-	-	2.420	1.540	1.110
Inductance		mH/km	0.315	0.309	0.290	0.277	0.262	0.251	0.252	0.246
Reactance at 50Hz		ohm/km	0.099	0.097	0.091	0.087	0.082	0.079	0.079	0.077
Impedance at 90°c		ohm/km	0.099	0.097	0.091	0.087	0.082	2.421	1.542	1.113
Maximum symmetrical	for 0.2 Sec	kA	0.3	0.5	0.8	1.3	2.1	3.4	5.3	7.4
short - circuit	for 1.0 Sec	kA	0.1	0.2	0.4	0.6	0.9	1.5	2.4	3.3
current ratings	for 3.0 Sec	kA	0.1	0.1	0.2	0.3	0.5	0.9	1.4	1.9
Maximum earth - fault	for 0.2 Sec	kA	1.2	1.5	1.7	1.9	3.1	3.6	5.7	6.6
short - circuit	for 1.0 Sec	kA	0.6	0.7	0.7	0.8	1.4	1.6	2.6	2.9
current ratings	for 3.0 Sec	kA	0.3	0.4	0.4	0.5	0.8	0.9	1.5	1.7
Approximate overall diar	neter	mm	12.0	13.6	14.7	15.9	18.8	21.3	26.3	29.0
Approximate Cable weig	ht	kg/km	247.4	313.0	364.9	428.9	639.0	806.3	1245.1	1506.0
Minimum bending radius	3	mm	72	81	88	96	113	128	158	174
Nominal Drum Length		m	1000	1000	1000	1000	1000	1000	500	500
Size of the Drum			D - 1	D - 1	D - 1	D - 2	D - 2	D - 3	D -4	D - 4
Drum Weight		kg	60	60	60	138	138	145	150	150
Gross weight of the Cable	e Drum	kg	307	373	425	567	777	951	773	903



- 1. Al Conductor
- 2. XLPE Insulation
- 3. Poly Propylene Fillers
- 4. PVC Bedding
- 5. Galvanized Steel Wire Armour
- 6. PVC Sheath

3 Core Armoured Cables - AI/XLPE/SWA/PVC With Sector Shaped Conductors

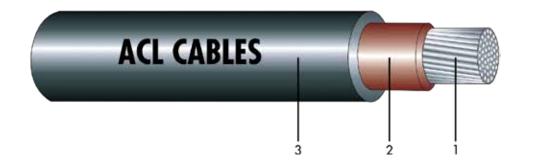
							•						
ITEM CODE Nominal Area of Conduct	or	UNIT sq.mm	L-30 25	L-31 35	L-32 50	L-33 70	L-34 95	L-35 120	L-36 150	L-37 185	L-38 240	L-39 300	L-40 400
Nominal Thickness of insu	ulation	mm	0.9	0.9	1.0	1.1	1.1	1.2	1.4	1.6	1.7	1.8	2.0
Thickness of Extruded be	edding	mm	1.0	1.0	1.0	1.0	1.2	1.2	1.4	1.4	1.4	1.6	1.6
Steel Armour wire diameter	er	mm	1.6	1.6	1.6	1.6	2.0	2.0	2.5	2.5	2.5	2.5	2.5
Thickness of oversheath		mm	1.7	1.8	1.8	1.9	2.1	2.2	2.3	2.4	2.6	2.7	2.9
Maximum armour resistan	ice at 20ºC	ohm/km	2.5	2.3	2.0	1.8	1.3	1.2	0.78	0.71	0.63	0.58	0.52
Gross armour wire area ((min)	sq.mm	60	66	82	93	132	145	206	236	260	285	324
Maximum resistance	D.C. at 20º C	ohm/km	1.20	0.868	0.641	0.443	0.320	0.253	0.206	0.164	0.125	0.100	0.0778
of Conductor	A.C. at 90° C	ohm/km	1.54	1.11	0.822	0.568	0.411	0.325	0.265	0.211	0.162	0.130	0.110
Inductance		mH/km	0.256	0.249	0.247	0.235	0.229	0.228	0.230	0.225	0.226	0.224	0.223
Reactance at 50Hz		ohm/km	0.081	0.078	0.078	0.074	0.072	0.072	0.072	0.071	0.071	0.070	0.070
Impedance at 90°c		ohm/km	1.542	1.113	0.826	0.573	0.417	0.333	0.275	0.223	0.177	0.148	0.130
Maximum symmetrical	for 0.2 Sec	kA	5.3	7.4	10.6	14.8	20.1	25.4	31.7	39.1	50.7	63.4	84.5
short - circuit	for 1.0 Sec	kA	2.4	3.3	4.7	6.6	9.0	11.3	14.2	17.5	22.7	28.3	37.8
current ratings	for 3.0 Sec	kA	1.4	1.9	2.7	3.8	5.2	6.5	8.2	10.1	13.1	16.4	21.8
Maximum earth - fault	for 0.2 Sec	kA	5.1	5.6	6.9	7.8	11.1	12.1	17.3	19.8	21.9	23.9	27.2
short - circuit	for 1.0 Sec	kA	2.3	2.5	3.1	3.5	5.0	5.4	7.8	8.9	9.8	10.7	12.2
current ratings	for 3.0 Sec	kA	1.3	1.4	1.8	2.0	2.9	3.1	4.5	5.1	5.6	6.2	7.0
Approximate overall diame	eter	mm	23.6	25.5	30.0	33.5	38.2	41.5	47.0	52.6	57.7	62.0	69.2
Approximate Cable weigh	t	kg/km	1008.5	1178.9	1496.4	1837.6	2519.2	2910.3	3824.0	4561.8	5427.0	6348.7	7660.2
Minimum bending radius		mm	189	204	240	268	305	332	376	421	462	496	554
Nominal Drum Length		m	500	500	500	500	500	500	500	350	250	250	250
Size of the Drum			D - 2	D - 4	D - 4	D - 6	D - 6	D - 11	D -11	D - 12	D - 12	-	-
Drum Weight		kg	138	150	150	230	230	495	495	510	510	-	-
Gross weight of the Cable I	Drum	kg	642	739	898	1149	1490	1950	2407	2107	1867	-	-



- 1. Al Conductor
- 2. XLPE Insulation
- 3. Poly Propylene Fillers
- 4. PVC Bedding
- 5. Galvanized Steel Wire Armour
- 6. PVC Sheath

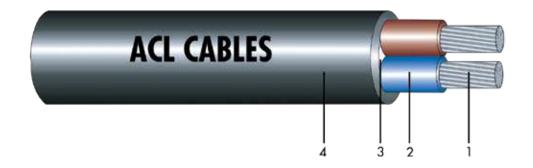
4 Core Armoured Cables - AI/XLPE/SWA/PVC With Circular Conductors

ITEM CODE		UNIT	L-41	L-42	L-43	L-44	L-45	L-46	L-47	L-48
Nominal Area of Conduc	tor	sq.mm	1.5	2.5	4.0	6.0	10.0	16.0	25.0	35.0
Nominal Thickness of in		mm	0.6	0.7	0.7	0.7	0.7	0.7	0.9	0.9
Thickness of Extruded b	bedding	mm	0.8	0.8	0.8	0.8	0.8	0.8	1.0	1.0
Steel Armour wire diame	ter	mm	0.9	0.9	0.9	1.25	1.25	1.25	1.6	1.6
Thickness of oversheath		mm	1.3	1.4	1.4	1.5	1.5	1.6	1.7	1.8
Maximum armour resista	ince at 20ºC	Ω/km	8.8	7.7	6.8	4.3	3.7	3.1	2.3	2.0
Gross armour wire area	(min)	sq.mm	17	19	22	34	41	48	76	86
Maximum resistance	D.C. at 20º C	Ω/km	18.1	12.1	7.41	4.61	3.08	1.91	1.20	0.868
of Conductor	A.C. at 90° C	Ω/km	-	-	-	-	-	2.420	1.540	1.110
Inductance		mH/km	0.315	0.309	0.290	0.277	0.262	0.251	0.252	0.246
Reactance at 50Hz		Ω/km	0.099	0.097	0.091	0.087	0.082	0.079	0.079	0.077
Impedance at 90°c		Ω/km	0.099	0.097	0.091	0.087	0.082	2.421	1.542	1.113
Maximum symmetrical	for 0.2 Sec	kA	0.3	0.5	0.8	1.3	2.1	3.4	5.3	7.4
short - circuit	for 1.0 Sec	kA	0.1	0.2	0.4	0.6	0.9	1.5	2.4	3.3
current ratings	for 3.0 Sec	kA	0.1	0.1	0.2	0.3	0.5	0.9	1.4	1.9
Maximum earth - fault	for 0.2 Sec	kA	1.4	1.6	1.8	2.9	3.4	4.0	6.4	7.3
short - circuit	for 1.0 Sec	kA	0.6	0.7	0.8	1.3	1.5	1.8	2.9	3.3
current ratings	for 3.0 Sec	kA	0.4	0.4	0.5	0.7	0.9	1.0	1.7	1.9
Approximate overall dian	neter	mm	12.7	14.4	15.7	18.0	20.3	23.0	28.4	31.4
Approximate Cable weig	ht	kg/km	280.7	348.8	414.1	581.0	731.5	934.8	1447.3	1750.7
Minimum bending radius		mm	76	87	94	108	122	138	171	188
Nominal Drum Length		m	1000	1000	1000	1000	1000	1000	1000	1000
Size of the Drum			D - 1	D - 1	D - 1	D - 1	D - 2	D - 2	D - 3	D - 3
Drum Weight		kg	60	60	60	60	138	138	145	145
Gross weight of the Cable	Drum	kg	341	409	474	641	870	1073	1592	1896

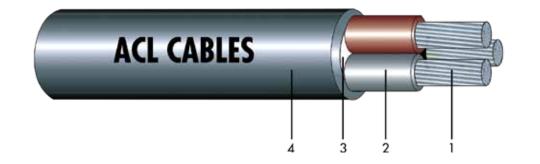


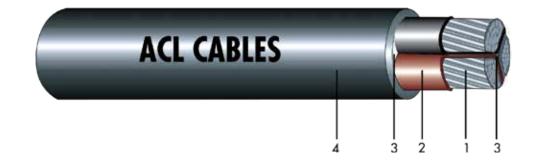
- 1. Al Conductor
- 2. XLPE Insulation
- 3. Poly Propylene Fillers
- 4. PVC Bedding
- 5. Galvanized Steel Wire Armour
- 6. PVC Sheath

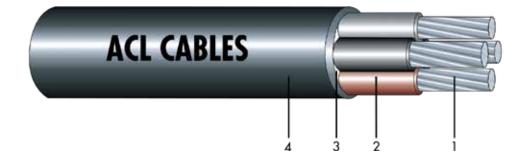
4 Core Armoured Cables - AI/XLPE/SWA/PVC With Sector Shaped Conductors


ITEM CODE Nominal Area of Conductor		UNIT sq.mm	L-49 25	L-50 35	L-51 50	L-52 70	L-53 95	L-54 120	L-55 150	L-56 185	L-57 240	L-58 300	L-59 400
Nominal Thickness of insula		mm	0.9	0.9	1.0	1,1	1,1	1.2	1.4	1.6	1,7	1.8	2.0
Thickness of Extruded beda		mm	1.0	1.0	1.0	1.1	1.1	1.4	1.4	1.4	1.6	1.6	1.8
Steel Armour wire diameter	aing	mm	1.6	1.6	1.6	2.0	2.0	2.5	2.5	2.5	2.5	2.5	3.15
Thickness of oversheath	at 0000	mm	1.7	1.8	1.9	2.1	2.2	2.3	2.4	2.6	2.7	2.9	3.2
Maximum armour resistance		Ω/km	2.3	2.0	1.8	1.2	1.1	0.76	0.68	0.61	0.54	0.49	0.35
Gross armour wire area (m	'	sq.mm	72	80	95	135	154	211	236	265	295	319	460
Maximum resistance	D.C. at 20° C	Ω/km	1.20	0.868	0.641	0.443	0.320	0.253	0.206	0.164	0.125	0.100	0.0778
of Conductor	A.C. at 90° C	Ω/km	1.54	1.110	0.822	0.568	0.411	0.325	0.265	0.211	0.162	0.130	0.110
Inductance		mH/km	0.256	0.249	0.247	0.235	0.229	0.228	0.230	0.225	0.226	0.224	0.223
Reactance at 50Hz		Ω/km	0.081	0.078	0.078	0.074	0.072	0.072	0.072	0.071	0.071	0.070	0.070
Impedance at 90°c		Ω/km	1.542	1.113	0.826	0.573	0.417	0.333	0.275	0.223	0.177	0.148	0.130
Maximum symmetrical	for 0.2 Sec	kA	5.3	7.4	10.6	14.8	20.1	25.4	31.7	39.1	50.7	63.4	84.5
short - circuit	for 1.0 Sec	kA	2.4	3.3	4.7	6.6	9.0	11.3	14.2	17.5	22.7	28.3	37.8
current ratings	for 3.0 Sec	kA	1.4	1.9	2.7	3.8	5.2	6.5	8.2	10.1	13.1	16.4	21.8
Maximum earth - fault	for 0.2 Sec	kA	6.1	6.8	7.9	11.4	12.9	17.7	19.8	22.3	24.8	26.8	38.7
short - circuit	for 1.0 Sec	kA	2.7	3.0	3.6	5.1	5.8	7.9	8.9	10.0	11.1	12.0	17.3
current ratings	for 3.0 Sec	kA	1.6	1.7	2.1	2.9	3.3	4.6	5.1	5.8	6.4	6.9	10.0
Approximate overall diamete	er	mm	27.4	30.0	33.7	39.3	43.1	48.4	53.1	58.0	64.2	68.6	78.8
Approximate Cable weight		kg/km	1246.9	1476.4	1819.6	2543.3	3108.0	3994.3	4679.2	5553.3	6697.4	7797.2	10356.5
Minimum bending radius		mm	218.8	239.8	269.9	314.2	345.0	387.4	424.4	464.4	513.2	548.4	630.5
Nominal Drum Length		m	500	500	500	500	500	500	350	350	-	-	-
Size of the Drum			D -4	D - 4	D - 6	D - 6	D - 11	D - 11	D -12	D - 13	-	-	-
Weight of Drum		kg	150	150	230	230	495	495	510	565	-	-	
Gross weight of the Cable Dru	um	kg	773	888	1140	1502	2049	2492	2148	2509	-	-	

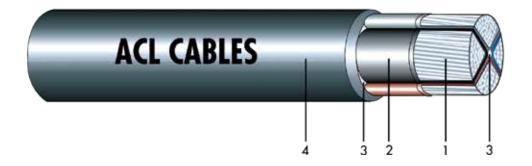
Al Conductor
 XLPE Insulation
 PVC Sheath


1 Core Unarm	oured Cab	les - Al/	XLPE	/PVC										600/1000V	BS 7889:1997
ITEM CODE Nominal Area of Conduct	or	UNIT sq.mm	L-60 50	L-61 70	L-62 95	L-63 120	L-64 150	L-65 185	L-66 240	L-67 300	L-68 400	L-69 500	L-70 630	L-71 800	L-72 1000
Nominal Thickness of ins	ulation	mm	1.0	1.1	1.1	1.2	1.4	1.6	1.7	1.8	2.0	2.2	2.4	2.6	2.8
Thickness of oversheath		mm	1.4	1.4	1.5	1.5	1.6	1.6	1.7	1.8	1.9	2.0	2.2	2.3	2.4
Maximum resistance of Conductor	D.C. at 20º C A.C. at 90º C	Ω/km Ω/km	0.641 0.822	0.443 0.568	0.320 0.411	0.253 0.325	0.206 0.265	0.164 0.211	0.125 0.162	0.100 0.130	0.0778 0.103	0.0605 0.082	0.0469 0.062	0.0367 0.043	0.0291 0.028
Inductance		mH/km	0.280	0.271	0.262	0.256	0.256	0.253	0.248	0.245	0.243	0.241	0.241	0.237	0.235
Reactance at 50Hz		Ω/km	0.088	0.085	0.082	0.080	0.080	0.080	0.078	0.077	0.076	0.076	0.076	0.074	0.074
Impedance at 90°c		Ω/km	0.827	0.574	0.419	0.335	0.277	0.226	0.180	0.151	0.128	0.111	0.097	0.086	0.079
Maximum symmetrical	for 0.2 Sec	kA	10.6	14.8	20.1	25.4	31.7	39.1	50.7	63.4	84.5	105.6	133.1	169.0	211.3
short - circuit	for 1.0 Sec	kA	4.7	6.6	9.0	11.3	14.2	17.5	22.7	28.3	37.8	47.2	59.5	75.6	94.5
current ratings	for 3.0 Sec	kA	2.7	3.8	5.2	6.5	8.2	10.1	13.1	16.4	21.8	27.3	34.4	43.6	54.6
Approximate overall diame	eter	mm	13.7	15.7	17.7	19.6	21.8	24.0	27.1	29.9	33.5	37.2	42.2	46.9	52.0
Approximate Cable weigh	t	kg/km	247.3	330.8	422.5	526.5	645.2	790.1	1006.5	1238.1	1558.4	1936.1	2497.5	3078.1	3816.7
Minimum bending radius		mm	82	94	106	118	131	144	162	179	201	223	253	281	312
Nominal Drum Length		m	1000	1000	1000	1000	1000	1000	1000	750	500	500	250	250	250
Size of the Drum			D - 1	D - 2	D - 2	D - 3	D - 3	D - 5	D - 5	D - 5	D - 5	D - 6	D - 6	D - 7	D - 7
Weight of the Drum		kg	60	138	138	145	145	225	225	225	225	230	230	245	245
Gross weight of the Cable I	Drum	kg	307	469	561	672	790	1015	1232	1154	1004	1198	854	1015	1199

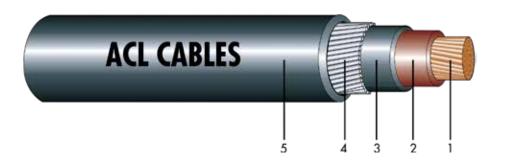

2 Core Unarn	noured Cables	- AI/XLPE/PVC Wi	th Circular Conducto	ors	600/1000V BS 5467:1989
ITEM CODE Nominal Area of Conduc	ctor	UNIT sq.mm	L-73 16	L-74 25	L-75 35
Nominal Thickness of in	sulation	mm	0.7	0.9	0.9
Thickness of oversheath		mm	1.8	1.8	1.8
Maximum resistance	D.C. at 20° C	ohm/km	1.91	1.20	0.868
of Conductor	A.C. at 90° C	ohm/km	2.420	1.540	1.110
Inductance		mH/km	0.251	0.252	0.246
Reactance at 50Hz		ohm/km	0.079	0.079	0.077
Impedance at 90°C		ohm/km	2.421	1.542	1.113
Maximum symmetrical	for 0.2 Sec	kA	3.4	5.3	7.4
short - circuit	for 1.0 Sec	kA	1.5	2.4	3.3
current ratings	for 3.0 Sec	kA	0.9	1.4	1.9
Approximate overall dian	neter	mm	16.6	20.0	22.3
Approximate Cable weig	ht	kg/km	245.6	346.2	430.8
Minimum bending radius	3	mm	100	120	134
Nominal Drum Length		m	1000	1000	1000
Size of the Drum			D - 2	D -3	D - 3
Weight of the Drum		kg	138	145	145
Gross weight of the Cable	e Drum	kg	384	491	576



3 Core Unarm	oured Cables	s - AI /XLPE/PVC W	ith Circular Conduct	ors	600/1000V BS 5467:1989
ITEM CODE Nominal Area of Conduct	tor	UNIT sq.mm	L-76 16.0	L-77 25.0	L-78 35.0
Nominal Thickness of ins	ulation	mm	0.7	0.9	0.9
Thickness of oversheath		mm	1.8	1.8	1.8
Maximum resistance	D.C. at 20° C	Ω/km	1.91	1.20	0.868
of Conductor	A.C. at 90° C	Ω/km	2.420	1.54	1.11
Inductance		mH/km	0.251	0.252	0.246
Reactance at 50Hz		Ω/km	0.079	0.079	0.077
Impedance at 90°C		Ω/km	2.421	1.542	1.113
Maximum symmetrical	for 0.2 Sec	kA	3.4	5.3	7.4
short - circuit	for 1.0 Sec	kA	1.5	2.4	3.3
current ratings	for 3.0 Sec	kA	0.9	1.4	1.9
Approximate overall diame	eter	mm	17.6	21.3	23.8
Approximate Cable weigh	ıt	kg/km	314.5	453.2	572.0
Minimum bending radius		mm	106	128	143
Nominal Drum Length		m	1000	500	500
Size of the Drum			D - 2	D - 2	D - 2
Weight of the Drum		kg	138	138	138
Gross weight of the Cable	Drum	kg	453	365	424

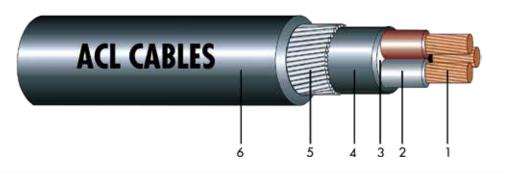


3 Core Unarm	oured Cab	oles - Al	/XLPE	/PVC V	Vith Se	ctor S	haped	Condu	ctors			600/1000V BS	5467:1989
ITEM CODE Nominal Area of Conduct	or	UNIT sq.mm	L-79 25	L-80 35	L-81 50	L-82 70	L-83 95	L-84 120	L-85 150	L-86 185	L-87 240	L-88 300	L-89 400
Nominal Thickness of ins	ulation	mm	0.9	0.9	1.0	1.1	1.1	1.2	1.4	1.6	1.7	1.8	2.0
Thickness of oversheath		mm	1.8	1.8	1.8	1.9	2.0	2.1	2.2	2.4	2.6	2.7	2.9
Maximum resistance	D.C. at 20° C	Ω/km	1.20	0.868	0.641	0.443	0.320	0.253	0.206	0.164	0.125	0.100	0.0778
of Conductor	A.C. at 90° C	Ω/km	1.54	1.110	0.822	0.568	0.411	0.325	0.265	0.211	0.162	0.130	0.110
Inductance		mH/km	0.256	0.249	0.247	0.235	0.229	0.228	0.230	0.225	0.226	0.224	0.223
Reactance at 50Hz		Ω/km	0.081	0.078	0.078	0.074	0.072	0.072	0.072	0.071	0.071	0.070	0.070
Impedance at 90°C		Ω/km	1.542	1.113	0.826	0.573	0.417	0.333	0.275	0.223	0.177	0.148	0.130
Maximum symmetrical	for 0.2 Sec	kA	5.3	7.4	10.6	14.8	20.1	25.4	31.7	39.1	50.7	63.4	84.5
short - circuit	for 1.0 Sec	kA	2.4	3.3	4.7	6.6	9.0	11.3	14.2	17.5	22.7	28.3	37.8
current ratings	for 3.0 Sec	kA	1.4	1.9	2.7	3.8	5.2	6.5	8.2	10.1	13.1	16.4	21.8
Approximate overall diame	eter	mm	18.6	20.3	24.8	28.3	31.6	34.9	39.0	44.8	49.9	53.8	61.0
Approximate Cable weigh	ıt	kg/km	428.1	532.2	702.7	947.7	1243.4	1514.0	1862.7	2348.1	2982.3	3628.8	4572.6
Minimum bending radius		mm	149	163	199	227	253	279	312	358	399	430	488
Nominal Drum Length		m	1000	1000	1000	1000	1000	500	500	500	350	350	250
Size of the Drum			D - 3	D -4	D - 5	D-5	D-8	D-7	D-8	D-12	D-12	D-12	D-12
Weight of the Drum		kg	145	150	225	225	255	245	255	510	510	510	510
Gross weight of the Cable I	Drum	kg	573	682	928	1173	1498	1002	1186	1684	1554	1780	1653


4 Core Unarn	noured Cables	- AI/XLPE/PVC Wi	th Circular Conducto	ors	600/1000V BS 5467:1989
ITEM CODE Nominal Area of Conduc	tor	UNIT sq.mm	L-90 16	L-91 25	L-92 35
Nominal Thickness of in	sulation	mm	0.7	0.9	0.9
Thickness of oversheath		mm	1.8	1.8	1.8
Maximum resistance	D.C. at 20º C	Ω/km	1.91	1.20	0.868
of Conductor	A.C. at 90° C	Ω/km	2.420	1.54	1.11
Inductance		mH/km	0.251	0.252	0.246
Reactance at 50Hz		Ω/km	0.079	0.079	0.077
Impedance at 90°C		Ω/km	2.421	1.542	1.113
Maximum symmetrical	for 0.2 Sec	kA	3.4	5.3	7.4
short - circuit	for 1.0 Sec	kA	1.5	2.4	3.3
current ratings	for 3.0 Sec	kA	0.9	1.4	1.9
Approximate overall diam	neter	mm	19.3	23.4	26.2
Approximate Cable weig	ht	kg/km	452.5	684.8	882.1
Minimum bending radius		mm	116	140	157
Nominal Drum Length		m	1000	1000	1000
Size of the Drum			D - 3	D - 5	D - 5
Weight of the Drum		kg	145	225	225
Gross weight of the Cable	Drum	kg	598	910	1107

4 Core Unarm	oured Cab	les - Al	/XLPE	/PVC V	Vith Se	ctor S	haped	Condu	ctors			600/1000V BS	5467:1989
ITEM CODE Nominal Area of Conduct	or	UNIT sq.mm	L-93 25	L-94 35	L-95 50	L-96 70	L-97 95	L-98 120	L-99 150	L-100 185	L-101 240	L-102 300	L-103 400
Nominal Thickness of ins	ulation	mm	0.9	0.9	1.0	1.1	1.1	1.2	1.4	1.6	1.7	1.8	2.0
Thickness of oversheath		mm	1.8	1.8	1.8	2.0	2.1	2.2	2.4	2.6	2.8	3.0	3.2
Maximum resistance	D.C. at 20° C	Ω/km	1.20	0.868	0.641	0.443	0.320	0.253	0.206	0.164	0.125	0.100	0.0778
of Conductor	A.C. at 90° C	Ω/km	1.540	1.110	0.822	0.568	0.411	0.325	0.265	0.211	0.162	0.130	0.110
Inductance		mH/km	0.256	0.249	0.247	0.235	0.229	0.228	0.230	0.225	0.226	0.224	0.223
Reactance at 50Hz		Ω/km	0.081	0.078	0.078	0.074	0.072	0.072	0.072	0.071	0.071	0.070	0.070
Impedance at 90°c		Ω/km	1.542	1.113	0.826	0.573	0.417	0.333	0.275	0.223	0.177	0.148	0.130
Maximum symmetrical	for 0.2 Sec	kA	5.3	7.4	10.6	14.8	20.1	25.4	31.7	39.1	50.7	63.4	84.5
short - circuit	for 1.0 Sec	kA	2.4	3.3	4.7	6.6	9.0	11.3	14.2	17.5	22.7	28.3	37.8
current ratings	for 3.0 Sec	kA	1.4	1.9	2.7	3.8	5.2	6.5	8.2	10.1	13.1	16.4	21.8
Approximate overall diam	eter	mm	22.4	24.8	28.3	32.7	36.5	40.4	45.3	50.2	56.2	61.9	70.4
Approximate Cable weigh	t	kg/km	547.3	688.6	913.0	1247.9	1611.6	1966.8	2442.5	3054.1	3881.2	4773.8	6031.2
Minimum bending radius		mm	179	198	227	261	292	323	362	402	449	495	563
Nominal Drum Length		m	500	500	500	500	500	500	350	350	250	-	-
Size of the Drum			D - 2	D -2	D - 4	D-6	D-6	D-9	D-9	D-9	D-12	-	-
Weight of the Drum		kg	138	138	150	230	230	265	265	265	510	-	-
Gross weight of the Cable	Drum	kg	412	482	607	854	1036	1248	1120	1334	1480	-	-

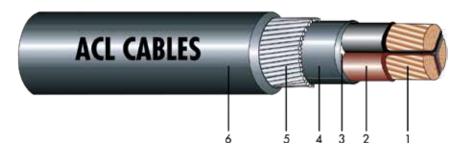
Cu Conductor
 XLPE Insulation
 PVC Bedding
 Al Wire Armour
 PVC Sheath


1900/3300V BS 5467:1997

1 Core Armoured Cables - Cu/XLPE/AWA/PVC

ITEM CODE UNIT X-156 X-157 X-158 X-159 X-160 X-161 X-162 X-163 X-164 X-165 X-166 X-167 X-168 Nominal Area of Conductor 50 70 95 120 150 185 240 300 400 500 630 800 1000 sq.mm 2.0 2.0 2.0 2.2 Nominal Thickness of insulation 2.0 2.0 2.0 2.0 2.0 2.0 2.4 2.6 2.8 mm Thickness of Extruded bedding 0.8 0.8 0.8 1.0 1.0 1.0 1.2 1.2 1.0 1.0 1.2 1.4 1.4 mm 1.25 1.6 2.0 2.0 2.5 Aluminium Armour wire diameter mm 1.25 1.25 1.6 1.6 1.6 1.6 2.0 2.5 Thickness of oversheath 1.6 1.6 1.6 1.7 1.7 1.8 1.8 1.9 2.0 2.1 2.2 2.4 2.5 mm 0.75 0.67 0.61 0.42 0.39 0.37 0.34 0.31 0.22 0.20 0.18 0.13 0.12 Maximum armour resistance at 20°C Ω/km Gross armour wire area 39 44 50 70 76 82 92 101 141 157 176 245 275 sq.mm Maximum resistance D.C. at 20° C Ω/km 0.387 0.268 0.193 0.153 0.124 0.0991 0.0754 0.0601 0.0470 0.0366 0.0283 0.0221 0.0176 of Conductor A.C. at 90° C Ω/km 0.493 0.341 0.246 0.196 0.159 0.128 0.098 0.079 0.063 0.051 0.042 0.036 0.032 Inductance mH/km 0.358 0.338 0.322 0.295 0.298 0.286 0.272 0.265 0.256 0.256 0.248 0.243 0.220 Reactance at 50Hz 0.101 0.090 0.080 0.076 Ω/km 0.113 0.106 0.093 0.094 0.085 0.083 0.080 0.078 0.069 Impedance at 90°C Ω/km 0.506 0.357 0.266 0.217 0.185 0.156 0.130 0.115 0.102 0.095 0.089 0.085 0.076 for 0.2 Sec Maximum symmetrical kΑ 16.0 22.4 30.4 38.4 48.0 59.2 76.8 96.0 128.0 160.0 201.6 256.0 319.9 short - circuit for 1.0 Sec 7.2 10.0 13.6 21.5 26.5 42.9 57.2 kΑ 17.2 34.3 71.5 90.1 114.5 143.1 Current ratings for 3.0 Sec kΑ 4.1 5.8 7.8 9.9 12.4 15.3 19.8 24.8 33.0 41.3 52.0 66.1 82.6 for 0.2 Sec 6.0 6.8 42.2 Maximum earth - fault kΑ 7.7 10.8 11.7 12.6 14.2 15.4 21.724.127.0 37.6 short - circuit for 1.0 Sec kΑ 2.7 3.0 3.5 4.8 5.2 5.7 6.3 6.9 9.7 10.8 12.1 16.8 18.9 for 3.0 Sec 1.7 2.0 2.8 3.0 5.6 6.2 current ratings kΑ 1.6 3.3 3.7 4.0 7.0 9.7 10.9 Approximate overall diameter 20.6 22.4 24.3 27.2 28.8 30.8 33.5 36.1 40.5 44.2 48.8 55.4 60.6 mm Approximate Cable weight 799.6 1038.3 1331.7 1680.4 1977.1 2386.9 2994.4 3645.7 4655.0 5741.1 7221.4 9267.5 ka/km 11459.1 Minimum bending radius 124 134 146 163 173 185 201 217 243 265 293 332 364 mm Nominal Drum Length 1000 1000 1000 1000 1000 750 750 500 500 500 250 250 250 m Size of the Drum D -3 D-3 D-3 D-5 D-5 D-5 D-5 D-5 D-5 D-8 D-7 D-9 D-12 145 145 225 225 225 245 Weight of the Drum kg 145 225 225 225 255 265 510 Gross weight of the Cable Drum 945 1183 1477 1905 2202 2015 2471 2048 2553 3126 2050 2582 3375 kg

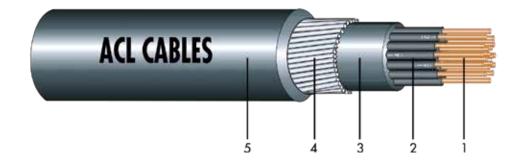
1900/3300V BS 5467:1997



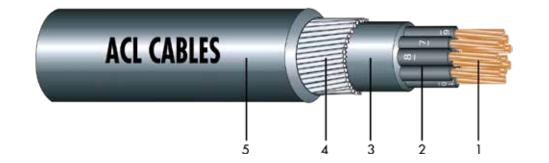
- 1. Cu Conductor
- 2. XLPE Insulation
- 3. Poly Propylene Fillers
- 4. PVC Bedding
- 5. Galvanized Steel Wire Amour
- 6. PVC Sheath

3 Core Armoured Cables - Cu/XLPE/SWA/PVC With Circular Conductors

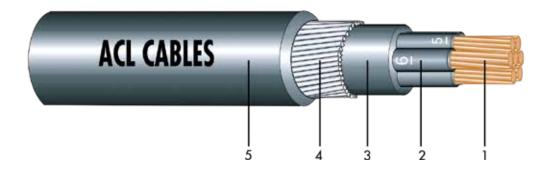
ITEM CODE		UNIT	X-169	X-170	X-171	
Nominal Area of Conducto	or	sq.mm	16	25	35	
Nominal Thickness of insu	lation	mm	2.0	2.0	2.0	
Thickness of Extruded bed	dding	mm	1.0	1.0	1.0	
Galvanized Steel Armour wi	ire diameter	mm	1.6	1.6	1.6	
Thickness of oversheath		mm	1.8	1.8	1.9	
Maximum armour resistance	ce at 20°C	Ω/km	1.9	1.7	1.8	
Gross armour wire area		sq.mm	76	86	94	
Maximum resistance	D.C. at 20º C	Ω/km	1.15	0.727	0.524	
of Conductor	A.C. at 90° C	Ω/km	1.460	0.927	0.668	
Inductance		mH/km	0.319	0.300	0.288	
Reactance at 50Hz		Ω/km	0.100	0.094	0.090	
Impedance at 90°C		Ω/km	1.463	0.932	0.674	
Maximum symmetrical	for 0.2 Sec	kA	5.1	8.0	11.2	
short - circuit	for 1.0 Sec	kA	2.3	3.6	5.0	
Current ratings	for 3.0 Sec	kA	1.3	2.1	2.9	
Maximum earth - fault	for 0.2 Sec	kA	6.4	7.3	7.9	
short - circuit	for 1.0 Sec	kA	2.9	3.2	3.6	
current ratings	for 3.0 Sec	kA	1.7	1.9	2.1	
Approximate overall diame	ter	mm	29.3	32.2	34.8	
Approximate Cable weight		kg/km	1668.7	2124.0	2582.6	
Minimum bending radius		mm	176	193	209	
Nominal Drum Length		m	500	750	750	
Size of the Drum			D - 4	D - 5	D - 5	
Weight of the Drum		kg	150	225	225	
Gross weight of the Cable D	Drum	kg	984	1818	2162	



- 1. Cu Conductor
- 2. XLPE Insulation
- 3. Poly Propylene Fillers
- 4. PVC Bedding
- 5. Galvanized Steel Wire Amour
- 6. PVC Sheath

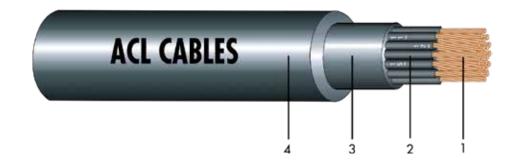

3 Core Armou	red Cables	s - Cu/X	LPE/SV	NA/PVC	With	Sector	Shaped	Condu	uctors		1900/3300\	/ BS 5467:1997
ITEM CODE Nominal Area of Conducto	or	UNIT sq.mm	X-172 35	X-173 50	X-174 70	X-175 95	X-176 120	X-177 150	X-178 185	X-179 240	X-180 300	X-181 400
Nominal Thickness of insu	ulation	mm	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Thickness of Extruded be	dding	mm	1.0	1.2	1.2	1.2	1.4	1.4	1.4	1.6	1.6	1.6
Galvanized Steel Armour w	vire diameter	mm	1.6	2.0	2.0	2.0	2.5	2.5	2.5	2.5	2.5	2.5
Thickness of oversheath		mm	1.9	2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.9
Maximum armour resistand	ce at 20⁰C	Ω/km	1.8	1.3	1.2	1.1	0.76	0.71	0.65	0.59	0.55	0.50
Gross armour wire area		sq.mm	84	126	138	151	206	221	245	270	290	324
Maximum resistance	D.C. at 20º C	Ω/km	0.524	0.387	0.268	0.193	0.153	0.124	0.0991	0.0754	0.0601	0.0470
of Conductor	A.C. at 90° C	Ω/km	0.668	0.493	0.342	0.254	0.196	0.159	0.128	0.099	0.080	0.064
Inductance		mH/km	0.295	0.283	0.263	0.254	0.248	0.244	0.233	0.232	0.227	0.223
Reactance at 50Hz		Ω/km	0.093	0.089	0.083	0.080	0.078	0.077	0.073	0.073	0.071	0.070
Impedance at 90°C		Ω/km	0.674	0.501	0.352	0.266	0.211	0.176	0.147	0.123	0.107	0.095
Maximum symmetrical	for 0.2 Sec	kA	11.2	16.0	22.4	30.4	38.4	48.0	59.2	76.8	96.0	128.0
short - circuit	for 1.0 Sec	kA	5.0	7.2	10.0	13.6	17.2	21.5	26.5	34.3	42.9	57.2
ratings	for 3.0 Sec	kA	2.9	4.1	5.8	7.8	9.9	12.4	15.3	19.8	24.8	33.0
Maximum earth - fault	for 0.2 Sec	kA	7.1	10.6	11.6	12.7	17.3	18.6	20.6	22.7	24.3	27.2
short - circuit	for 1.0 Sec	kA	3.2	4.7	5.2	5.7	7.7	8.3	9.2	10.1	10.9	12.2
Current ratings	for 3.0 Sec	kA	1.8	2.7	3.0	3.3	4.5	4.8	5.3	5.9	6.3	7.0
Approximate overall diame	eter	mm	31.1	34.7	38.0	41.4	45.7	48.5	51.9	56.9	61.2	66.6
Approximate Cable weight		kg/km	2162.4	2971.9	3743.2	4687.2	5905.1	6888.3	8248.2	10204.1	12165.6	14956.5
Minimum bending radius		mm	249	278	304	331	366	388	415	455	490	533
Nominal Drum Length		m	500	500	500	500	500	350	350	250	250	250
Size of the Drum			D -6	D-6	D-6	D-8	D-10	D-10	D-12	D-12	-	-
Drum Weight		kg	230	230	230	255	481	481	510	510	-	-
Gross weight of the Cable D	Drum	kg	1311	1716	2102	2599	3434	2892	3397	3061	-	-

1.Cu Conductor
 XLPE Insulation
 PVC Bedding
 Galvanized Steel Wire Amour
 PVC Sheath


1.5 mm ² Armoured Aux	iliary C	ables	- Cu/)	KLPE/	SWA/	PVC						6	600/1000V B	S 5467:1997
ITEM CODE Number of Cores	UNIT Nos.	X-138 _b 6	X-138 7	X-139 _c 10	X-139 12	Х-140 _ь 14	X-140 _d 16	X-140 19	X-141 _。 24	X-141 27	X-142 _c 30	X-142 37	X-143 _g 44	X-143 48
Nominal Area of Conductor	sq.mm	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Nominal Thickness of insulation	mm	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
Thickness of Extruded bedding	mm	0.8	0.8	0.8	0.8	0.8	0.8	0.8	1.0	1.0	1.0	1.0	1.0	1.0
Galvanized Steel Armour wire diameter	mm	0.9	0.9	1.25	1.25	1.25	1.25	1.25	1.6	1.6	1.6	1.6	1.6	1.6
Thickness of oversheath	mm	1.4	1.4	1.5	1.5	1.6	1.6	1.6	1.7	1.7	1.7	1.7	1.8	1.8
Maximum armour resistance at 20° C	Ω/km	7.5	7.5	7.5	4.0	4.0	4.0	3.5	3.5	2.3	2.3	2.0	2.0	1.8
Gross armour wire area	sq.mm	20	20	34	36	38	40	43	66	70	70	76	84	86
Maximum resistance of conductor D.C. at 20°C	Ω/km	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1
Approximate overall diameter	mm	14.6	14.6	18.3	18.7	19.7	20.4	21.3	25.3	26.5	26.5	28.1	31.1	31.5
Approximate Cable weight	kg/km	416.8	426.2	677.0	721.2	800.3	868.3	952.3	1355.5	1476.8	1504.8	1712.3	2029.9	2111.2
Minimum bending radius	mm	88	88	110	112	118	122	128	152	159	159	169	187	189
Nominal Drum Length	m	1000	1000	1000	1000	1000	1000	1000	750	750	750	500	500	500
Size of the Drum		D - 1	D -1	D - 2	D - 2	D - 3	D - 3	D - 3	D - 3	D - 3	D - 3	D - 3	D - 3	D - 3
Drum Weight	kg	60	60	138	138	145	145	145	145	145	145	145	145	145
Gross weight of the Cable Drum	kg	477	486	815	859	945	1013	1097	1162	1253	1274	1001	1160	1201

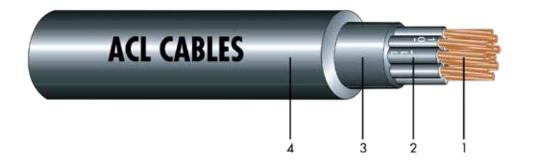
Cu Conductor
 XLPE Insulation
 PVC Bedding
 Galvanized Steel Wire Amour
 PVC Sheath

2.5 mm ² Armoured Auxiliary Cables - Cu/XLPE/SWA/PVC														
ITEM CODE Number of Cores	UNIT Nos.	Х-144 _ь 6	X-144 7	X-145 _c 10	X-145 12	X-146 _b 14	X-146 _d 16	X-146 19	X-147 _e 24	X-147 27	X-148 _c 30	X-148 37	X-149 _g 44	X-149 48
Nominal Area of Conductor	sq.mm	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
Nominal Thickness of insulation	mm	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7
Thickness of Extruded bedding	mm	0.8	0.8	0.8	0.8	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.2	1.2
Galvanized Steel Armour wire diameter	mm	0.9	0.9	1.25	1.25	1.6	1.6	1.6	1.6	1.6	1.6	1.6	2.0	2.0
Thickness of oversheath	mm	1.4	1.4	1.6	1.6	1.7	1.7	1.7	1.8	1.8	1.8	1.8	2.0	2.0
Maximum armour resistance at 20° C	Ω/km	6.3	6.3	6.3	3.5	3.5	3.5	2.3	2.3	1.9	1.9	1.7	1.7	1.2
Gross armour wire area	sq.mm	24	24	42	43	60	62	66	78	84	84	90	129	132
Maximum resistance of conductor D.C. at 20°C	Ω/km	7.41	7.41	7.41	7.41	7.41	7.41	7.41	7.41	7.41	7.41	7.41	7.41	7.41
Approximate overall diameter	mm	16.4	16.4	20.9	21.5	23.7	24.6	25.7	29.3	30.7	30.7	32.7	37.7	38.2
Approximate Cable weight	kg/km	543.0	558.3	904.4	967.2	1216.6	1307.4	1438.1	1819.1	2001.5	2047.3	2337.7	3074.1	3201.0
Minimum bending radius	mm	98	98	125	129	142	148	154	176	184	184	196	226	229
Nominal Drum Length	m	1000	1000	1000	1000	750	750	750	750	750	750	750	500	500
Size of the Drum		D - 2	D - 2	D - 3	D - 3	D - 3	D - 3	D - 3	D - 5	D - 5	D - 5	D - 5	D - 5	D - 5
Drum Weight	kg	138	138	145	145	145	145	145	225	225	225	225	225	225
Gross weight of the Cable Drum	kg	681	696	1049	1112	1057	1126	1224	1589	1726	1760	1978	1762	1826



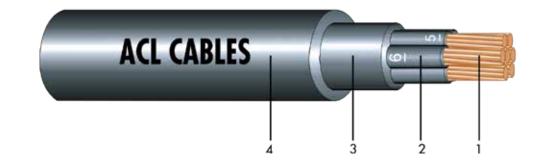
Cu Conductor
 XLPE Insulation
 PVC Bedding
 Galvanized Steel Wire Amour
 PVC Sheath

4.0 mm ² Armoured Aux	I.0 mm ² Armoured Auxiliary Cables - Cu/XLPE/SWA/PVC													
ITEM CODE Number of Cores	UNIT Nos.	Х-150 _ь 6	X-150 7	X-151 _c 10	X-151 12	X-152 _b 14	X-152 _d 16	X-152 19	X-153 24	X-153 27	X-154 _。 30	X-154 37	X-155 _g 44	X-155 48
Nominal Area of Conductor	sq.mm	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Nominal Thickness of insulation	mm	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7
Thickness of Extruded bedding	mm	0.8	0.8	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.2	1.2	1.2	1.2
Galvanized Steel Armour wire diameter	mm	1.25	1.25	1.6	1.6	1.6	1.6	1.6	1.6	1.6	2.0	2.0	2.0	2.0
Thickness of oversheath	mm	1.5	1.5	1.6	1.6	1.7	1.7	1.7	1.9	1.9	2.0	2.0	2.1	2.1
Maximum armour resistance at 20° C	Ω/km	4.0	4.0	4.0	2.3	2.3	2.3	2.0	2.0	1.7	1.7	1.2	1.2	1.0
Gross armour wire area	sq.mm	37	37	62	64	68	72	76	90	97	123	132	151	151
Maximum resistance of conductor D.C. at 20°C	Ω/km	4.61	4.61	4.61	4.61	4.61	4.61	4.61	4.61	4.61	4.61	4.61	4.61	4.61
Approximate overall diameter	mm	19.0	19.0	24.2	24.8	26.1	27.2	28.4	32.7	34.3	35.7	38.1	42.2	42.8
Approximate Cable weight	kg/km	785.2	811.2	1299.5	1397.2	1553.7	1694.7	1873.1	2399.0	2641.1	2978.9	3417.0	4105.4	4263.1
Minimum bending radius	mm	114	114	145	149	157	163	170	196	206	214	229	253	257
Nominal Drum Length	m	1000	1000	1000	1000	1000	1000	1000	750	500	500	500	500	500
Size of the Drum		D - 2	D -2	D - 5	D - 5	D - 5	D - 5	D - 5	D - 6	D - 6	D - 6	D - 6	D - 8	D - 8
Drum Weight	kg	138	138	225	225	225	225	225	230	230	230	230	255	255
Gross weight of the Cable Drum	kg	923	949	1525	1622	1779	1920	2098	2029	1551	1719	1939	2308	2387


Cu Conductor
 XLPE Insulation
 PVC Bedding
 PVC Sheath

600/1000V

1.5 mm² Unarmoured Auxiliary Cables - Cu/XLPE/PVC


ITEM CODE Number of Cores	UNIT Nos.	Х-192 _ь 6	X-192 7	X-193 _c 10	X-193 12	Х-194 _ь 14	X-194 _d 16	X-194 19	X-195 _。 24	X-195 27	X-196 _。 30	X-196 37	X-197 ₉ 44	X-197 48
Nominal Area of Conductor	sq.mm	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Nominal Thickness of insulation	mm	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
Thickness of Extruded bedding	mm	0.8	0.8	0.8	0.8	0.8	0.8	0.8	1.0	1.0	1.0	1.0	1.0	1.0
Thickness of oversheath	mm	1.4	1.4	1.5	1.5	1.6	1.6	1.6	1.7	1.7	1.7	1.7	1.8	1.8
Maximum resistance of conductor D.C. at 20°C	Ω/km	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1
Approximate overall diameter	mm	12.8	12.8	15.8	16.2	17.2	17.9	18.8	22.1	23.3	23.3	24.9	27.9	28.3
Approximate Cable weight	kg/km	248.5	257.9	386.8	421.2	479.7	528.3	592.8	803.5	892.9	920.9	1080.5	1332.8	1398.2
Minimum bending radius	mm	77	77	95	97	103	107	113	133	140	140	149	167	170
Nominal Drum Length	m	1000	1000	1000	1000	1000	1000	1000	750	750	750	750	500	500
Size of the Drum		D - 1	D - 1	D - 2	D - 2	D - 2	D - 2	D - 2	D - 3	D - 3	D - 3	D - 3	D - 4	D - 4
Drum Weight	kg	60	60	138	138	138	138	138	145	145	145	145	150	150
Gross weight of the Cable Drum	kg	309	318	525	559	618	666	731	748	815	836	955	816	849
1														

Cu Conductor
 XLPE Insulation
 PVC Bedding
 PVC Sheath

2.5 mm ² Unarmoured Auxiliary Cables - Cu/XLPE/PVC														600/1000V
ITEM CODE Number of Cores	UNIT Nos.	X-198 ₆ 6	X-198 7	X-199 _c 10	X-199 12	X-200 _ь 14	X-200 _d 16	X-200 19	X-201 _e 24	X-201 27	X-202 _。 30	X-202 37	X-203 _g 44	X-203 48
Nominal Area of Conductor	sq.mm	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
Nominal Thickness of insulation	mm	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7
Thickness of Extruded bedding	mm	0.8	0.8	0.8	0.8	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.2	1.2
Thickness of oversheath	mm	1.4	1.4	1.6	1.6	1.7	1.7	1.7	1.8	1.8	1.8	1.8	2.0	2.0
Maximum resistance of conductor D.C. at 20°C	Ω/km	7.41	7.41	7.41	7.41	7.41	7.41	7.41	7.41	7.41	7.41	7.41	7.41	7.41
Approximate overall diameter	mm	14.6	14.6	18.4	19.0	20.5	21.4	22.5	26.1	27.5	27.5	29.5	33.7	34.2
Approximate Cable weight	kg/km	344.4	359.7	554.6	607.7	712.5	787.3	886.1	1169.9	1304.4	1350.3	1592.8	2014.5	2116.5
Minimum bending radius	mm	88	88	110	114	123	128	135	157	165	165	177	202	205
Nominal Drum Length	m	1000	1000	1000	1000	750	750	750	750	750	500	500	500	500
Size of the Drum		D - 1	D - 1	D - 2	D - 2	D - 2	D - 3	D - 3	D - 3	D - 3	D - 3	D - 4	D - 5	D - 5
Weight of the Drum	kg	60	60	138	138	138	145	145	145	145	145	150	225	225
Gross weight of the Cable Drum	kg	404	420	693	746	672	735	810	1022	1123	820	946	1232	1283

Cu Conductor
 XLPE Insulation
 PVC Bedding
 PVC Sheath

4.0 mm ² Unarmoured A	uxiliary	/ Cable	es - C	u/XLP	E/PV	С								600/1000V
ITEM CODE Number of Cores	UNIT Nos.	Х-204 _ь 6	X-204 7	X-205 _c 10	X-205 12	Х-206 _ь 14	X-206 _d 16	X-206 19	X-207 _e 24	X-207 27	X-208 _c 30	X-208 37	X-209 _g 44	X-209 48
Nominal Area of Conductor	sq.mm	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Nominal Thickness of insulation	mm	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7
Thickness of Extruded bedding	mm	0.8	0.8	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.2	1.2	1.2	1.2
Thickness of oversheath	mm	1.5	1.5	1.6	1.6	1.7	1.7	1.7	1.9	1.9	2.0	2.0	2.1	2.1
Maximum resistance of conductor D.C. at 20°C	Ω/km	4.61	4.61	4.61	4.61	4.61	4.61	4.61	4.61	4.61	4.61	4.61	4.61	4.61
Approximate overall diameter	mm	16.5	16.5	21.0	21.6	22.9	24.0	25.2	29.5	31.1	31.7	34.1	38.2	38.8
Approximate Cable weight	kg/km	475.5	501.5	781.0	862.7	985.7	1094.8	1241.4	1652.5	1846.8	1969.2	2332.5	2869.4	3027.1
Minimum bending radius	mm	99	99	126	130	137	144	151	177	187	190	205	229	233
Nominal Drum Length	m	1000	1000	750	750	750	750	750	500	500	500	500	500	500
Size of the Drum		D - 2	D - 2	D - 3	D - 3	D - 3	D - 3	D - 3	D - 4	D - 5	D - 5	D - 5	D - 5	D - 5
Drum Weight	kg	138	138	145	145	145	145	145	150	225	225	225	225	225
Gross weight of the Cable Drum	kg	614	640	731	792	884	966	1076	976	1148	1210	1391	1660	1739

Schedule of installation methods of cables for determining current carrying capacity

Insta	allation Method	Reference method to be used to determine			
Examples	Description	current carrying capacity			
Room Side	Non-sheathed cables in conduit In a thermally insulated wall with an inner skin having a thermal conductance of not less than 10 W/m ² K ^o A				
Room Side	Multi core cables in conduit In a thermally insulated wall with an inner skin having a thermal conductance of not less than 10 W/m²K°	A			
Room Side	Multi core cables direct in a thermally insulated wall with an inner skin having a thermal conductance of not less than 10 W/m ² K ^c	A			
4	Non-sheathed cables in conduit on a wooden or masonry wall °	В			
5	Multi core cable in conduit on a wooden or masonry wall °	В			
	Non-sheathed cables in cable trunking on a wooden or masonry wall. run horizontally (left) ^b run vertically (Right) ^{b,c}	В			

Ir	Installation Method Examples Description					
Examples	Description	current carrying capacity				
	Multi core cable in cable trunking on a wooden or masonry wall run horizontally (left) ^b run vertically (Right) ^{b,c}	B*				
8	Single core or multi core cables: Fixed on (clipped direct), or spaced less than 0.3 x cable diameter from a wooden or masonry wall.°	С				
9	Single-core or multi core cables: Fixed directly under a wooden or masonry ceiling.	С				
10	Single-core or multi core cables: on unperforated tray run horizontally or vertically ° De = the external diameter of a cable. The space between wall and cable tray will be , 2.2x De ; When 3 single core cables are bound in trefoil , 3.0 x De ; When 3 single core cables are laid in flat .	С				
11	Single-core or multi core cables: On perforated tray Run horizontally or vertically c The space between wall and cable tray will be , 2.2x De ; When 3 single core cables are bound in trefoil , 3.0 x De ; When 3 single core cables are laid in flat formation.	D				

Installa	tion Method	Reference method to be used to determine
Examples	Description	current carrying capacity
+ ≥ 0.3 De	Single core or multi core cables: on ladder bracket type tray or on a wire mesh tray run horizontally or vertically c	
12	The space between wall and cable tray will be , 2.2x De ; When 3 single core cables are bound in trefoil , 3.0 x De ; When 3 single core cables are laid in flat formation.	D
13	Multi core armoured cable in conduit or in cable ducting in the ground	E for multi core armoured cable only.
14	Sheathed, armoured or multi core cables direct in the ground: without added mechanical protection.	E
15	Sheathed, armoured or multi core cables direct in the ground: with added mechanical protection (e.g. Concrete cover)	E

- b –Values given for Installation Methods are for a single circuit. Where there is more than one circuit in the trunking the group rating factor given in Adjustment Table -7 is applicable, irrespective of the presence of an internal barrier or partition.
- c- Care is needed where the cable runs vertically and ventilation is restricted The ambient temperature at the top of the vertical section can be much higher.
- The inclusion of directly buried cables is satisfactory where the soil thermal resistivity is of the order of 2.5K.m/W. For lower soil resistivities, the current-carrying capacity for directly buried cables is appreciably higher than for cables in ducts.
- * Still under consideration in IEC.

Single core unarmoured Cu/XLPE Cables with or without sheath

CURRENT-CARRYING CAPACITY (amperes) & Voltage Drop (mV/A/m)

				Re	ference met	nod & Current	t carrying ca	pacity				
		4	E	3	()			C			Voltage Drop
	Enclosed ir thermally in:		Enclosed in a wall or in		clippe	clipped direct in free air or on a perforated cable tray etc horizontal or vertical etc) Touching cable diameter		(per ampere per meter)				
Conductor Cross sectional Area	2 cables. single- phase a.c or d.c.	3 or 4 cables. three-phase a.c	2 cables. single- phase a.c or d.c	3 or 4 cables. three-phase a.c	2 cables. single- phase a.c or d.c.	3 or 4 cables. three-phase a.c flat and	a.c or d.c.		3 cables. three-phase a.c trefoil	2 cables, singl or d.c.or 3 ca phase a	ables three-	clipped direct, on tray or in free air
					flat and touching	touching or trefoil	flat			Horizontal	Vertical	3or 4 Cables, three phase a.c. touching Flat
mm ²	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	mV/A/m
50	158	141	198	175	228	209	242	216	207	275	246	0.87
70	200	179	253	222	293	268	310	279	268	353	318	0.62
95	241	216	306	269	355	326	377	342	328	430	389	0.46
120	278	249	354	312	413	379	437	400	383	500	454	0.38
150	318	285	393	342	476	436	504	464	444	577	527	0.32
185	362	324	449	384	545	500	575	533	510	661	605	0.28
240	424	380	528	450	644	590	679	634	607	781	719	0.24
300	486	435	603	514	743	681	783	736	703	902	833	0.21
400	-	-	683	584	868	793	940	868	823	1085	1008	0.195
500	-	-	783	666	990	904	1083	998	946	1253	1169	0.18
630	-	-	900	764	1130	1033	1254	1151	1088	1454	1362	0.17
800	-	-	-	-	1288	1179	1358	1275	1214	1581	1485	0.165
1000	-	-	-	-	1443	1323	1520	1436	1349	1775	1671	0.165

Multicore unarmoured Cu/XLPE & PVC Sheathed Cables

CURRENT-CARRYING CAPACITY (A) & Voltage Drop (mV/A/m)

			Refere	nce method & Cu	rrent carrying cap	acity			
		Α	В		(0	C)	Voltage Drop
	Enclosed in thermally inst		enclosed in o wall or in		clipped	direct	free air or on a p etc, horizor	(per ampere per meter)	
Conductor Cross sectional Area	1 two-core cable,single- phase a.c. or d.c.	1 three- or four-core cable. three- phase a.c.	1 two-core cable, single- phase a.c. or d.c.	1 three- or four-core cable, three- phase a.c.	1 two-core cable, single-phase a.c. or d.c.	1 three- or four-core cable. three- phase a.c.	1 two-core cable,single- phase a.c. or d.c.	1 three- or four-core cable, three- phase a.c.	three- or four-core cable
				l					three-phase a.c.
mm ²	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	mV/A/m
1	14.5	13	17	15	19	17	21	18	40
1.5	18.5	16.5	22	19.5	24	22	26	23	27
2.5	25	22	30	26	33	30	36	32	16
4	33	30	40	35	45	40	49	42	10
6	42	38	51	44	58	52	63	54	6.8
10	57	51	69	60	80	71	86	75	4
16	76	68	91	80	107	96	115	100	2.5
25	99	89	119	105	138	119	149	127	1.65
35	121	109	146	128	171	147	185	158	1.15
50	145	130	175	154	209	179	225	192	0.87
70	183	164	221	194	269	229	289	246	0.6
95	220	197	265	233	328	278	352	298	0.45
120	253	227	305	268	382	322	410	346	0.37
150	290	259	334	300	441	371	473	399	0.3
185	329	295	384	340	506	424	542	456	0.26
240	386	346	459	398	599	500	641	538	0.21
300	442	396	532	455	693	576	741	621	0.185
400	-	-	625	536	803	667	865	741	0.165

Single core armoured Cu/XLPE insulated Cables (non magnetic armour)

CURRENT-CARRYING CAPACITY (A) & Voltage Drop (mV/A/m)

				Ref	erence meth	od & Current c	arrying capa	ncity					
		С					D					Voltage Drop	
	clipped	direct			in free	e air or , on a pe	rforated cable	e tray, horizontal o	or vertical			- (per ampere per meter)	
	Touc	hing	Touching		Touching Spaced by one cable diameter								
Conductor Cross sectional Area	2 cables, single phase a.c. or d.c. flat	3 or 4 cables, three-phase a.c. flat	2 cables, single phase a.c. or d.c. flat	3 cables. three-phase a.c. flat	3 cables. three-phase a.c. trefoil	2 cables, d.c. 2 cables, 3 or 4 cables, single-phase a.c. three-phase a.c.					3 or 4 cables, three- phase a.c.		
						Horizontal	Vertical	Horizontal	Vertical	Horizontal	Vertical	flat and touching	
mm ²	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	mV/A/m	
50	237	220	253	232	222	284	270	282	266	288	266	0.88	
70	303	277	322	293	285	356	349	357	337	358	331	0.65	
95	367	333	389	352	346	446	426	436	412	425	393	0.52	
120	425	383	449	405	402	519	497	504	477	485	449	0.44	
150	488	437	516	462	463	600	575	566	539	549	510	0.39	
185	557	496	587	524	529	688	660	643	614	618	574	0.34	
240	656	579	689	612	625	815	782	749	714	715	666	0.3	
300	755	662	792	700	720	943	906	842	805	810	755	0.28	
400	853	717	899	767	815	1137	1094	929	889	848	797	0.27	
500	962	791	1016	851	918	1314	1266	1032	989	923	871	0.25	
630	1082	861	1146	935	1027	1528	1474	1139	1092	992	940	0.24	
800	1170	904	1246	987	1119	1809	1744	1204	1155	1042	978	0.23	
1000	1261	961	1345	1055	1214	2100	2026	1289	1238	1110	1041	0.21	

Multicore armoured Cu/XLPE & PVC Sheathed Cables

CURRENT-CARRYING CAPACITY (A) & Voltage Drop (mV/A/m

Ambient temperature: 30°C Ground Ambient temperature: 20°C Conductor operating temperature: 90°C

		Ret	ference method & Curre	ent carrying capacity			
		C		D	E	E	Voltage Drop
Conductor Cross sectional	clippe	d direct		rforated cable tray etc, al or vertical	direct in ground or in around		
Area	1 two-core cable. single-phase a.c. or d.c.	1 three- or 1 four-core cable. three-phase a.c.	1 two-core cable. single-phase a.c. or d.c.	1 three- or 1 four-core cable. three-phase a.c.	1 two-core cable. single-phase a.c. or d.c.	1 three- or 1 four- core cable. three- phase a.c.	three- or four-core cable
						-	three-phase a.c.
mm ²	(A)	(A)	(A)	(A)	(A)	(A)	mV/A/m
1.5	27	23	29	25	25	21	27
2.5	36	31	39	33	33	28	16
4	49	42	52	44	43	36	10
6	62	53	66	56	53	44	6.8
10	85	73	90	78	71	58	4
16	110	94	115	99	91	75	2.5
25	146	124	152	131	116	96	1.65
35	180	154	188	162	139	115	1.15
50	219	187	228	197	164	135	0.87
70	279	238	291	251	203	167	0.6
95	338	289	354	304	239	197	0.45
120	392	335	410	353	271	223	0.37
150	451	386	472	406	306	251	0.3
185	515	441	539	463	343	281	0.26
240	607	520	636	546	395	324	0.21
300	698	599	732	628	446	365	0.185
400	787	673	847	728	-	-	0.165

Single core unarmoured AI/XLPE Cables with or without sheath

CURRENT-CARRYING CAPACITY (amperes) & Voltage Drop (mV/A/m)

				Re	eference metho	od & Current	carrying capa	city				Voltage
		Α	E	3	C	;			[)		Drop
Conductor		n conduit in Isulating wall		conduit on a trunking	clippec	direct		on a perforated I or vertical etc)			in free air -Spaced by one cable diameter	
Cross sectional Area	2 cables. single-phase a.c. or d.c.	3 or 4 cables. three-phase a.c.	2 cables. single-phase a.c. or d.c.	3 or 4 cables. three-phase a.c.	2 cables, single-phase a.c. or d.c. flat and touching	3 or 4 cables, 3ph a.c. flat and touching or trefoil	2 cables. single-phase a.c. or d.c. flat	3 cables .three-phase a.c. flat	3 cables. three-phase a.c trefoil	2 cables, single-phase a.c. or d.c.or 3 cables three- phase a.c flat		3 or 4 cables. 3-ph. a.c. touching Flat
										Horizontal	Vertical	
mm ²	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	mV/A/m
50	125	113	157	140	154	136	184	165	159	210	188	1.46
70	158	142	200	179	198	174	237	215	206	271	244	1.00
95	191	171	242	217	241	211	289	264	253	332	300	0.75
120	220	197	281	251	280	245	337	308	296	387	351	0.61
150	253	226	307	267	324	283	389	358	343	448	408	0.50
185	288	256	351	300	371	323	447	413	395	515	470	0.43
240	338	300	412	351	439	382	530	492	471	611	561	0.35
300	387	344	471	402	508	440	613	571	544	708	652	0.31
380	-	-	-	-	658	594	679	628	638	798	742	0.28
480	-	-	-	-	765	692	786	728	743	927	865	0.27
600	-	-	-	-	871	791	903	836	849	1058	990	0.25
740	-	-	-	-	1001	911	1025	951	979	1218	1143	0.23
960	-	-	-	-	1176	1072	1191	1108	1151	1440	1355	0.23
1200	-	-	-	-	1333	1217	1341	1249	1307	1643	1550	0.22

Multicore unarmoured AI/XLPE & PVC sheathed Cables

CURRENT-CARRYING CAPACITY (amperes) & Voltage Drop (mV/A/m)

Ambient temperature: 30°C Conductor operating temperature: 90°C

			Refere	ence method & Cur	rent carrying capa	icity			Voltage Drop
		A		В		С		כ	Tonage Brop
Conductor Cross sectional		nduit in thermally ing wall		luit on a wall or in king	clippe	d direct	in free air or c cable tray etc, ho	three- or four- core cable	
Area	1 two- core cable, single-phase a.c. or d.c.	1 three- or four-core cable three-phase a.c.	1 two- core cable, single-phase a.c. or d.c.	1 three- or four-core cable, three-phase a.c.	1 two- core cable, single-phase a.c. or d.c.	1 three- or four-core cable .three-phase a.c.	1 two- core cable, single-phase a.c. or d.c.	l three- or four- core cable, three-phase a.c.	three-phase a.c.
mm ²	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	mV/A/m
16	60	55	72	64	84	76	91	77	4.2
25	78	71	94	84	101	90	108	97	2.7
35	96	87	115	103	126	112	135	120	1.95
50	115	104	138	124	154	136	164	146	1.45
70	145	131	175	156	198	174	211	187	0.97
95	175	157	210	188	241	211	257	227	0.72
120	-	180	-	216	-	245		263	0.58
150	-	206	-	240	-	283	-	304	0.47
185	-	233	-	272	-	323	-	347	0.39
240	-	273	-	318	-	382	-	409	0.31
300	-	313	-	364	-	440	-	471	0.26

Single core armoured AI/XLPE insulated Cables (non magnetic armour)

CURRENT-CARRYING CAPACITY (amperes) & Voltage Drop (mV/A/m)

Ambient temperature: 30°C Conductor operating temperature: 90°C

	Reference method & Current carrying capacity											
		A					В					 Voltage Drop
	clippe	d direct			in free	air or , on a per	forated cable 1	tray, horizontal o	r vertical			
Conductor Cross sectional Area	Tour	ching		Touching				clipped direct, on tray or in free air				
All a	2 cables, single phase a.c. or d.c. flat	3 or 4 cables, three-phase a.c. flat	2 cables, single phase a.c. or d.c. flat	3 cables. three-phase a.c. flat	3 cables. three-phase a.c. trefoil	2 cables, d.c.		2 cables, single-phase a.c.		3 or 4 d three-ph	•	3 or 4 cables, three-phase a.c.
						Horizontal	Vertical	Horizontal	Vertical	Horizontal	Vertical	flat and touching
mm ²	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	(A)	mV/A/m
50	179	165	192	176	162	216	197	212	199	215	192	1.40
70	228	209	244	222	207	275	253	269	254	270	244	1.00
95	276	252	294	267	252	332	307	328	310	324	296	0.78
120	320	291	340	308	292	384	357	378	358	372	343	0.64
150	368	333	390	352	337	441	411	429	409	424	394	0.54
185	419	378	444	400	391	511	480	490	467	477	447	0.47
240	494	443	521	468	465	605	572	576	549	554	523	0.39
300	568	508	597	536	540	701	666	654	624	626	595	0.34
380	655	573	688	608	625	812	780	735	704	693	649	0.32
480	747	642	786	685	714	942	906	825	790	765	717	0.29
600	836	706	880	757	801	1076	1036	909	872	832	780	0.27
740	934	764	988	824	897	1250	1205	989	950	890	835	0.26
960	1056	838	1121	911	1014	1488	1435	1094	1052	970	911	0.24
1200	1163	903	1236	990	1118	1715	1658	1187	1141	1043	980	0.22

Multicore armoured AI/XLPE & PVC sheathed Cables

Ambient temperature: 30°C Ground Ambient temperature: 20°C Conductor operating temperature: 90°C

CURRENT-CARRYING CAPACITY (A) & Voltage Drop (mV/A/m)

		Ref	erence method & Curre	ent carrying capacity			
		C		כ	E	E	Voltage Drop
Conductor Cross sectional	clipped	d direct		rforated cable tray etc, Il or vertical	direct in ground or in around		
Area	1 two-core cable. single-phase a.c. or d.c.	1 three- or 1 four-core cable. three-phase a.c.	1 two-core cable. single-phase a.c. or d.c.	1 three- or 1 four-core cable. three-phase a.c.	1 two-core cable. single-phase a.c. or d.c.	1 three- or 1 four- core cable. three- phase a.c.	three- or four-core cable
						-	three-phase a.c.
mm2	(A)	(A)	(A)	(A)	(A)	(A)	mV/A/m
16	82	71	85	74	71	59	4.2
25	108	92	112	98	90	75	2.7
35	132	113	138	120	108	90	1.95
50	159	137	166	145	128	106	1.45
70	201	174	211	185	158	130	0.97
95	242	214	254	224	186	154	0.72
120	-	249	-	264	-	174	0.58
150	-	284	-	305	-	197	0.47
185	-	328	-	350	-	220	0.39
240	-	386	-	418	-	253	0.31
300	-	441	-	488	-	286	0.26

SUSTAINED CURRENT RATING (Amperes)

Ambient temperature: 25°C

Conductor operating temperature: 90°C

SINGLE CO	RE ARMOUF	RED CABLES	WITH Cu CO	NDUCTORS	(1900/3300V)					
				3 Single C	ore Cables					
	DIRE	CT IN GROU	ND	DL	СТ	AIR				
Conductor cross	Trefoil	Touching	Spaced	Trefoil	Flat	Trefoil	Vertical Spaced	Horizontal Spaced		
Conductor cross sectional area	\otimes	000	000		000		000			
		ARMOURED		ARMC	DURED	ARMOURED				
mm ²	a.c.	a.c	a.c	a.c	a.c	a.c	a.c	a.c		
50	222	221	230	219	220	240	277	299		
70	271	269	279	264	265	300	345	372		
95	324	321	331	310	311	368	420	452		
120	366	361	369	342	342	428	478	513		
150	409	402	409	376	376	487	536	576		
185	460	449	454	414	414	556	604	648		
240	528	513	512	464	463	656	695	745		
300	589	568	560	506	504	747	771	826		
400	651	619	595	535	532	851	829	887		
500	720	677	641	579	574	963	906	968		
630	789	733	684	624	618	1084	983	1049		
800	831	763	703	650	644	1178	1030	1098		
1000	880	802	735	689	682	1278	1096	1168		

Cables shall only be continuously operated at their tabulated rating if the minimum current at which circuit protection is designed to operate does not exceed 1.45 times (in case of cables in air or ducts) or 1.3 times (in the case of cables laid direct in the ground) the values give above

SUSTAINED CURRENT RATING (Amperes)

Ambient temperature: 25°C Conductor operating temperature: 90°C

THREE COR	E ARMOURED COP	PER CABLES (1900/3	300V)								
	One 3 Core Cables										
Conductor cross sectional area	DIRECT IN GROUND	DUCT	AIR								
	ARMOURED	ARMOURED	ARMOURED								
mm²	a.c.	a.c	a.c								
16	114	96	112								
25	147	124	149								
35	175	147	177								
50	207	174	213								
70	254	214	268								
95	304	257	328								
120	345	293	380								
150	387	328	432								
185	436	371	496								
240	502	428	583								
300	563	480	667								
400	633	549	765								

Cables shall only be continuously operated at their tabulated rating if the minimum current at which circuit protection is designed to operate does not exceed 1.45 times (in case of cables in air or ducts) or 1.3 times (in the case of cables laid direct in the ground) the values give above

VARIATION IN AMBIENT TEMPERATURE

ADJUSTMENT TABLE 1

Correction factors for ambient temperature where protection is against short -circuit

Type of Insulation	Operating				AMBIENT TEMPERATURE (°C)								
	Temperature	25	30	35	40	45	50	55	60	65	70	75	80
Thermosetting (XLPE)	90°C	1.02	1	0.96	0.91	0.87	0.82	0.76	0.71	0.65	0.58	0.5	0.41

ADJUSTMENT TABLE 2

VARIATION IN GROUND TEMPERATURE

Insulation & Conductor Temperature (°C)	GROUND TEMPERATURE (°C)														
	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80
XLPE - 90	1.07	1.04	1	0.96	0.93	0.89	0.85	0.8	0.76	0.71	0.65	0.6	0.53	0.46	0.38

VARIATION IN SOIL THERMAL RESISTIVITY

Rating factors for cables buried direct in the ground or in an underground conduit system to BS EN 50086-2-4 for soil thermal resitivites other than 2.5K.m/W to be applied to the current carrying capacities for reference method E

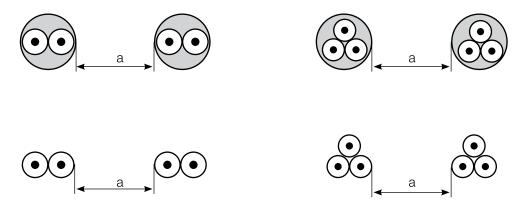
Thermal resistivity, K.m/W	0.5	0.8	1	1.2	1.5	2	2.5	3
Rating factor for cables in buried ducts	1.28	1.2	1.18	1.13	1.1	1.05	1	0.96
Rating factor for dircct buried cables	1.88	1.62	1.5	1.4	1.28	1.12	1	0.9

- **NOTE 1:** The rating, factors given have been averaged over the range of conductor sizes and lypes of installation included in the relevant tables in this appendix. The overall accuracy of rating factors is within \pm 5%.
- **NOTE 2:** Where more precise values are required they may be calculated by methods given in BS7769 (BS IEC 60287)
- **NOTE 3:** The rating factors are applicable to ducts buried at depths of up to 0.8 m.

ADJUSTMENT TABLE 4

Depth of laying, m	Buried direct	In buried ducts
0.50	1.03	1.02
0.70	1.00	1
1	0.97	0.98
1.25	0.95	0.96
1.50	0.94	0.95
1.75	0.93	0.94
2	0.92	0.93
2.5	0.90	0.92
3	0.89	0.91

ADJUSTMENT TABLE 3



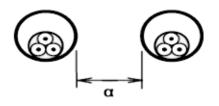
Rating factors for more than one circuit, cables buried directly in the ground

ADJUSTMENT TABLE 5

		Cable-to-cable clearance (a)										
Number of circuits	Nil (cables touching)	One cable diameter	0.125 m	0.25 m	0.5 m							
2	0.75	0.8	0.85	0.9	0.9							
3	0.65	0.7	0.75	0.8	0.85							
4	0.6	0.6	0.7	0.75	0.8							
5	0.55	0.55	0.65	0.7	0.8							
6	0.5	0.55	0.6	0.7	0.8							

Multicore Cables

- **NOTE 1:** Values given apply to an installation depth of 0.7 in and a soil thermal resistivity ol 2.5 K.m/W.
- **NOTE 2:** In case of a thermal resistivity lower than 2.5 K.m/W the rating factors can, in general be increased and can be calculated by the methods given in BS 7769 (BS IEC 60287).



Rating factors for more than one circuit, cables in ducts buried in the ground

ADJUSTMENT TABLE 6

	Duct-to-duct clearance (a)									
Number of cables	Nil (ducts touching)	0.25 m	0.5 m	1.0 m						
2	0.85	0.9	0.95	0.95						
3	0.75	0.85	0.9	0.95						
4	0.7	0.8	0.85	0.9						
5	0.65	0.8	0.85	0.9						
6	0.6	0.8	0.8	0.9						

Multicore Cables

NOTE 1: Values given apply to an installation depth of 0.7 m and a soil thermal resistivity of 2.5 K..m/W.

NOTE 2: In case of a thermal resistivity lower than 2.5 K.m/W the rating factors can, in general, be increased and can he calculated by the methods given in BS 7769 (BS I EC 60287).

Rating factors for one circuit or one multicore cable or for a group of circuits, or a group of multicore cables

ADJUSTMENT TABLE 7

	Number of circuits or multicore cables												
Arrangement (cables touching)	1	2	3	4	5	6	7	8	9	12	16	20	
Bunched in air, on a surface, embedded or enclosed	1	0.8	0.7	0.65	0.6	0.57	0.54	0.52	0.5	0.45	0.41	0.38	
Single layer on wall or floor	1	0.85	0.79	0.75	0.73	0.72	0.72	0.71	0.7	0.7	0.7	0.7	
Single layer mullicore on a perforated horizontal or vertical cable tray system	1	0.88	0.82	0.77	0.75	0.73	0.73	0.72	0.72	0.72	0.72	0.72	
Single layer multi core on cable ladder system or cleats etc	1	0.87	0.82	0.8	0.8	0.79	0.79	0.78	0.78	0.78	0.78	0.78	

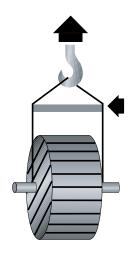
INSTALLATION OF POWER-X CABLES

ACL XLPE power/control cables are suitable for installation in ground or air. It is easier to handle and install. Being lighter and of smaller dimensions compared to other power cables of the same ampacity, this cable requires lesser number of supports, clamps, cleats etc., when installed in air. These cables can be installed in vertical runs of unlimited difference in level.

Installation radii should be as large as possible. However, the minimum bending radii during set have been included in the date tables.

Installing Power-X Cable

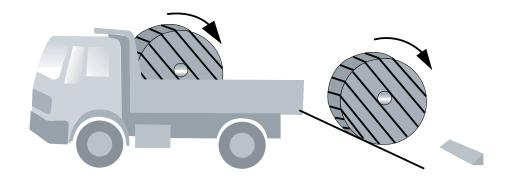
Safe Pulling Force


During Laying of power cables following safe pulling forces can be used especially when laying is done by machine

Pulling Method	Cable Type	Safe Pulling force (N)			
Using a pulling eye	Cu conductor (Armoured or Unarmoured)	50 x area x No. of cores			
	Al conductor (Armoured or unarmoured)	30 x area x No. of cores			
Using a cable stocking	Cu conductor(Unarmoured)	50 x Area x No. of cores			
	Al conductor (Unarmoured)	30 x Area x No. of cores			
	Cu or Al with Flat Wire Armour	9 x D ²			
	Cu or Al with Round Wire Armour	12 x D ²			
	Control cables (Armoured or Unarmoured)	5 x D ²			

D - Overall Diameter of the cable

HANDLING INSTRUCTIONS FOR ACL CABLES DRUMS



Storage Position

Move by Crane or Fork Lift

Transport direction Do not drop

ALLOWABLE CABLE LENGTHS ON DRUMS

10 11 12 13 14	.0	1588											D14
12 13													
13		1313											
	2.0	1103											
14	5.0	940	1749										
	.0	810	1508										
15	.0	706	1314										
16		620	1155										
17	.0	550	1023										
18	5.0	490	912	1493	1241								
19	0.0	440	819	1340	1114								
20	0.0	397	739	1209	1005								
21	.0	360	670	1097	912								
22	.0	328	611	999	831								
23	5.0	300	559	914	760	1503	1401	1117					
24	.0	276	513	840	698	1380	1287	1026					
25	i.O	254	473	774	643	1272	1186	945					
26	5.0	235	437	716	595	1176	1097	874					
27	.0	218	405	664	552	1091	1017	810					
28	5.0	203	377	617	513	1014	946	754	1191				
29	0.0	189	351	575	478	945	881	702	1111				
30	0.0	176	328	537	447	883	824	656	1038				
31	.0	165	308	503	418	827	771	615	972				
32	.0	155	289	472	393	776	724	577	912				
33	.0	146	271	444	369	730	681	542	858				
34	.0	137	256	418	348	688	641	511	808				
35	i.O	130	241	395	328	649	605	482	763				
36	i.0	123	228	373	310	613	572	456	721				
37	.0	116	216	353	294	581	542	432	682	572			
38	5.0	110	205	335	279	551	513	409	647	543			
39	0.0	104	194	318	264	523	487	388	614	515			
40	0.0	99	185	302	251	497	463	369	584	490			
41	.0	94	176	288	239	473	441	351	556	466			
42	0	90	168	274	228	451	420	335	530	444			
43	.0	-	-	-	218	430	401	319	505	424			
44	.0	-	-	-	208	411	383	305	482	405	646		
45	.0	-	-	-	199	393	366	292	461	387	618		

ALLOWABLE CABLE LENGTHS ON DRUMS

APPROX.CABLE OD (m	חm) D1	D2	D3	D4	D5	D6	D7	D 8	D9	D10	D11	D12	D13	D1
46.0	-	-	-	190	376	350	279	441						
47.0	-	-	-	182	360	336	267	423						
48.0	-	-	-	175	345	322	256	405	340	543	478			
49.0	-	-	-	168	331	309	246	389	326	521	458			
50.0	-	-	-	161	318	297	236	374	313	500	440			
51.0	-	-	-	-	306	285	227	359	301	481	423			
52.0	-	-	-	-	294	274	218	345	290	463	407			
53.0	-	-	-	-	283	264	210	333	279	445	392			
54.0	-	-	-	-	273	254	203	320	269	429	377			
55.0	-	-	-	-	263	245	195	309	259	414	364			
56.0	-	-	-	-	254	236	188	298	250	399	351	295		
57.0	-	-	-	-	245	228	182	287	241	385	339	285		
58.0	-	-	-	-	236	220	176	278	233	372	327	275		
59.0	-	-	-	-	228	213	170	268	225	359	316	266		
60.0	-	-	-	-	-	206	164	259	218	347	306	257	355	
61.0	-	-	-	-	-	199	159	251	211	336	296	249	343	
62.0	-	-	-	-	-	193	154	243	204	325	286	241	332	
63.0	-	-	-	-	-	187	149	235	197	315	277	233	322	
64.0	-	-	-	-	-	-	144	-	191	-	269	226	312	1
65.0	-	-	-	-	-	-	140	-	185	-	260	219	302	1
66.0	-	-	-	-	-	-	136	-	180	-	253	213	293	1
67.0	-	-	-	-	-	-	132	-	175	-	245	206	284	1
68.0	-	-	-	-	-	-	128	-	169	-	238	200	276	1
69.0	-	-	-	-	-	-	124	-	165	-	231	195	268	1
70.0	-	-	-	-	-	-	121	-	160	-	225	189	261	1
71.0	-	-	-	-	-	-	117	-	155	-	218	184	253	1
72.0	-	-	-	-	-	-	114	-	151	-	212	179	246	1
73.0	-	-	-	-	-	-	111	-	147	-	206	174	240	1
74.0	-	-	-	-	-	-	108	-	143	-	201	169	233	1
75.0	-	-	-	-	-	-	-	-	-	-	-	165	227	1
76.0	-	-	-	-	-	-	-	-	-	-	-	160	221	Ç
77.0	-	-	-	-	-	-	-	-	-	-	-	156	215	(
78.0	-	-	-	-	-	-	-	-	-	-	-	152	210	ę
79.0	-	-	-	-	-	-	-	-	-	-	-	148	205	ç
80.0	-	-	-	-	-	-	-	-	-	-	-	145	200	8

DRUMS DIMENSIONS

DRUM NO			DRU		S IN						
			inche	S					mm		
	(F	Х	В	Х	T)		(F	Х	В	Х	T)
D1	37	Х	20	Х	22		940	Х	508	Х	559
D2	44	Х	20	Х	22		1118	Х	508	Х	559
D3	44	Х	20	Х	36		1118	Х	508	Х	914
D4	44	Х	24	Х	36		1118	Х	610	Х	914
D5	56	Х	28	Х	36		1422	Х	711	Х	914
D6	56	Х	30	Х	36		1422	Х	762	Х	914
D7	56	Х	35	Х	36		1422	Х	889	Х	914
D8	60	Х	30	Х	36		1524	Х	762	Х	914
D9	60	Х	35	Х	36		1524	Х	889	Х	914
D10	66	Х	30	Х	36		1676	Х	762	Х	914
D11	66	Х	35	Х	36		1676	Х	889	Х	914
D12	66	Х	40	Х	36		1676	Х	1016	Х	914
D13	72	Х	40	Х	36		1829	Х	1016	Х	914
D14	72	Х	56	Х	36		1829	Х	1422.4	Х	914
F F T h F H F H F H F H F H F H F H H H H H H H H H H H H H											

Note : t = 76.2 mm & h = 95 mm for all above drums except for D 1 which t = 51 mm. H= 90mm.